2023

PHYSICS — MINOR

Paper: MN-1

(Basic Physics-I)

Full Marks: 75

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

১। *যে-কোনো পাঁচটি* প্রশ্নের উত্তর দাওঃ

9×¢

- (ক) p -এর কোন মানের জন্য দুটি ভেক্টর $\overrightarrow{A}=p\hat{i}+5\hat{j}+3\hat{k}$ এবং $\overrightarrow{B}=-2\hat{i}+\hat{j}-\hat{k}$ পরম্পরের লম্ব হবে?
- (খ) বল $F = A \cos(pt) + B \sin(qs)$ । যদি t এবং s যথাক্রমে সময় এবং দূরত্ব হয়, তবে $\frac{p}{A}$ এবং $\frac{q}{B}$ -এর মাত্রা নির্ণয় করো।
- (গ) গোলীয় নির্দেশতন্ত্র (r, θ, ϕ) ব্যবহার করে 'a' ব্যাসার্ধের গোলকের আয়তন নির্ণয় করো।
- (ঘ) \hat{i} এবং \hat{j} –এর সাপেক্ষে \hat{r} এবং $\hat{\theta}$ –এর রাশিমালা লেখো। দেখাও যে $\frac{d\hat{r}}{dt} = \frac{d\theta}{dt}\,\hat{\theta}$ (প্রতীকগুলি প্রচলিত অর্থে ব্যবহৃত)।
- (৩) দুটি বস্তুর গতি সংক্রান্ত সমস্যায় হ্রাসপ্রাপ্ত ভরের সংজ্ঞা দাও। দেখাও যে হ্রাসপ্রাপ্ত ভরের মান যে-কোনো একটি ভরের চাইতে কম।
- (চ) কেপলারের সূত্রগুলি বিবৃত করো।
- (ছ) অসংনম্য প্রবাহীর ক্ষেত্রে ধারারেখ প্রবাহ বলতে কী বোঝো?
- (জ) রেনল্ডসের সংখ্যা কী? এই সংখ্যার তাৎপর্য লেখো।

প্রত্যেক বিভাগ থেকে অন্ততঃ একটি করে নিয়ে মোট পাঁচটি প্রশ্নের উত্তর দাও।

বিভাগ - ক

- ২। (ক) দেখাও যে $\vec{\nabla} \times (\vec{\nabla} \phi) = \vec{0}$, যেখানে $\phi = \phi(x, y, z)$ একটি স্কেলার অপেক্ষক।
 - (খ) $\vec{F}=x(x-y)\hat{i}+y(y-z)\hat{j}+z(z-x)\hat{k}$ ভেক্টরটির (1,-2,1) বিন্দুতে ডাইভারজেন্স নির্ণয় করো।
 - (গ) একটি ভেক্টরের রৈখিক সমাকল বলতে কী বোঝো? স্টোকসের সূত্র বিবৃত করো এবং এর গাণিতিক রূপ লেখো।

8+8+(>+0)

Please Turn Over

- ৩। (ক) (1 + e^{-x}) অপেক্ষকটির লেখচিত্র আঁকো, যেখানে 0 ≤ x < ∞।
 - (খ) x = 1 বিন্দুর সাপেক্ষে $\frac{1}{x}$ -এর টেলর বিস্তৃতি নির্ণয় করো।
 - (গ) অবকল সমীকরণটি সমাধান করো $\frac{d^2y}{dx^2} \frac{dy}{dx} 6y = e^{2x}$
 - (ষ) দেখাও যে $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$, যেখানে $u = e^x \sin y$ ।

2+0+8+0

8। (ক) দেখাও যে $\frac{1}{3} \iint_{S} \vec{r} \cdot d\vec{S} = V$,

যেখানে \vec{r} হল স্থান ভেক্টর এবং V হল S তল দিয়ে আবদ্ধ আয়তন।

- (খ) (অ) একটি চোঙাকৃতি নির্দেশতম্ব (p, ф, z)-এর চিত্র আঁকো। প্রতিটি রাশির সীমা লেখো।
 - (আ) দেখাও যে, একটি চোঙাকৃতি নির্দেশতয়ে একক ভেক্টরগুলি পরস্পরের লয়।
 - (ই) চোঙাকৃতি নির্দেশতয়ে একটি কণার স্থান ভেক্টরটি লেখো।

0+{(2+2)+0+2}

বিভাগ - খ

- ৫। (ক) দুটি জড়ত্বীয় নির্দেশতন্ত্র S এবং S'-এর মধ্যে গ্যালিলিওর রূপান্তর সমীকরণ লেখো যেখানে S', S-এর সাপেক্ষে সাধারণ x-x' অক্ষ বরাবর সমবেগে গতিশীল। দেখাও যে নিউটনের দ্বিতীয় গতিসূত্র গ্যালিলিওর রূপান্তরে অপরিবর্তিত থাকে।
 - (খ) ধনাত্মক X অক্ষ বরাবর গতিশীল একটি কণার উপর ক্রিয়াশীল অবমন্দন বল $F_r = -kv$, যেখানে k একটি ধ্রুবক। কণাটির প্রারম্ভিক অবস্থান x_0 এবং প্রারম্ভিক গতিবেগ v_0 হলে সময়ের সাপেক্ষে কণাটির সরণ ও গতিবেগের রাশিমালা নির্ণয় করো।
 - (গ) (অ) সংরক্ষী বল বলতে কী বোঝো? দুটি উদাহরণ দাও।

 (আ) দেখাও যে সংরক্ষী বলক্ষেত্রে কোনো একটি কণার গতিশক্তি ও স্থিতিশক্তির যোগফল সর্বদা ধ্রুবক থাকে।

 (১+২)+৩+[(২+১)+৩]
- ৬। (ক) একটি কণাগোষ্ঠীর ভরকেন্দ্রের সংজ্ঞা দাও। একটি কণাগোষ্ঠীতে 3 gm ভরের স্থানাঙ্ক (1, 0, -1), 5 gm ভরের স্থানাঙ্ক (-2, 1, 3) এবং 2 gm ভরের স্থানাঙ্ক (3, -1, 1)। ভরকেন্দ্রের স্থানাঙ্ক নির্ণয় করো।
 - (খ) দেখাও যে, একটি কণাগোষ্ঠীর ক্ষেত্রে, মোট গতিশক্তি ভরকেন্দ্রের সাপেক্ষে গতিশক্তি এবং ভরকেন্দ্রের গতিশক্তি^{র সমষ্টি।}
 - (গ) একটি বস্তু কেন্দ্রগ বল F(R)-এর আকর্ষণে বলকেন্দ্রের চারদিকে R ব্যাসার্ধের বৃত্তপথে প্রদক্ষিণ করে। $F(R) \propto R^{-\frac{3}{2}}$ হলে বস্তুর পর্যায়কাল T-এর সঙ্গে R-এর সম্পর্ক নির্ণয় করে। (2+0)+8+0

- ৭। (ক) স্থিতিস্থাপক ও অস্থিতিস্থাপক সংঘর্ষ বলতে কী বোঝো?
 - (খ) সমান ভর 'm' বিশিষ্ট দৃটি কণা একই সরলরেখা বরাবর u_1 এবং u_2 গতিবেগে পরস্পরের দিকে চলছে। স্থিতিস্থাপক সংঘর্ষের পরে কণাদৃটির অন্তিম গতিবেগ v_1 ও v_2 -এর রাশিমালা নির্ণয় করো।
 - (গ) দেখাও যে কেন্দ্রগ বলের অধীনে গতিশীল কোনো কণার গতিপথ সর্বদা এক সমতলে থাকে।
 - (ঘ) x-অক্ষ বরাবর একটি কণা $V(x)=rac{1}{2}kx^2$; k>0 স্থিতিশক্তির অধীনে চলমান।
 - (অ) সাম্যবিন্দু নির্ণয় করো।
 - (আ) সাম্যাবস্থার প্রকৃতি পর্যালোচনা করো।

২+8+2+(2+2)

- b। xy-সমতলে m ভরের গতিশীল একটি কণার স্থান ভেক্টর হল $\vec{r}=a\cos\omega t\,\hat{t}+b\sin\omega t\,\hat{j}$; যেখানে a,b এবং ω ধনাত্মক ধ্রুবক এবং a>b।
 - (ক) দেখাও যে কণাটির গতিপথ উপবৃত্তাকার।
 - (খ) দেখাও যে কণাটির উপর ক্রিয়াশীল বল সর্বদাই কেন্দ্র অভিমুখী।
 - (গ) মূলবিন্দু সাপেক্ষে কণাটির কৌণিক ভরবেগ ও ক্রিয়াশীল ভ্রামক-এর মান নির্ণয় করো।

0+0+(0+0)

- ৯। (ক) ধারারেখ প্রবাহের ক্ষেত্রে, ধারাবাহিকতার সমীকরণ (equation of continuity) নির্ণয় করো।
 - ্থ) শাস্ত অসংনম্য প্রবাহীর গতির জন্য অয়লারের সমীকরণ প্রতিষ্ঠা করো। এই সমীকরণ থেকে কীভাবে পাস্কালের সূত্র পাওয়া যায়?
 - একটি খোলামুখ পাত্রে তরলের উপরিতল h₁ উচ্চতায় আছে। নীচ থেকে h₂ উচ্চতায় পাত্রের গায়ে একটি ছোট ছিদ্র আছে।
 তরলের নিঃসরণ বেগ নির্ণয় করো।

[English Version]

The figures in the margin indicate full marks.

1. Answer any five questions:

3×5

- (a) For what value of p, the two vectors $\vec{A} = p\hat{i} + 5\hat{j} + 3\hat{k}$ and $\vec{B} = -2\hat{i} + \hat{j} \hat{k}$ will be perpendicular to each other?
- (b) Force $F = A \cos(pt) + B \sin(qs)$. If t and s are the time and distance respectively, find the dimension of $\frac{p}{A}$ and $\frac{q}{B}$.
- (c) Find the volume of a sphere of radius 'a' using spherical coordinates (r, θ, ϕ) .

- (d) Write down the expressions for \hat{r} and $\hat{\theta}$ in terms of \hat{i} and \hat{j} . Hence, show that $\frac{d\hat{r}}{dt} = \frac{d\theta}{dt} \hat{\theta}$. (Symbols have their usual meanings).
- (e) Define reduced mass for a two-body problem. Show that it is less than any one of the masses.
- (f) Write down the Kepler's Laws.
- (g) What do you mean by Streamline flow of an incompressible fluid?
- (h) What is Raynolds number? Explain its significance.

Answer any five questions, taking at least one question from each group.

Group - A

- (a) Show that $\nabla \times (\nabla \phi) = \vec{0}$, where $\phi = \phi(x, y, z)$ is a scalar function.
 - (b) Find the divergence of the vector $\vec{F} = x(x-y)\hat{i} + y(y-z)\hat{j} + z(z-x)\hat{k}$ at point (1, -2, 1).
 - (c) What do you mean by line integral of a vector? State Stoke's theorem and write down its 4+4+(1+3) mathematical form.
- (a) Draw the graph of the function: $(1 + e^{-x})$; where $0 \le x < \infty$. 3.
 - (b) Expand $\frac{1}{r}$ about the point x = 1 in Taylor's series.
 - (c) Solve the differential equation $\frac{d^2y}{dx^2} \frac{dy}{dx} 6y = e^{2x}$
 - (d) Show that $\frac{\partial^2 u}{\partial x \partial v} = \frac{\partial^2 u}{\partial v \partial x}$, where $u = e^x \sin y$.

2+3+4+3

(a) Show that $\frac{1}{3} \oiint \vec{r} \cdot d\vec{S} = V$, where \vec{r} is the position vector and \vec{V} is the volume enclosed by the

closed surface S.

- (i) Draw a cylindrical coordinate system (ρ, ϕ, z) . Indicate the range of each coordinates.
 - (ii) Show that the unit vectors in cylindrical coordinate system are orthogonal.
 - 3+{(2+2)+3+2 (iii) Write down the position vector of a particle in cylindrical coordinates.

Group - B

- 5. (a) Write down the Galilean transformation relations between two inertial frames S and S' where S' is moving along common x-x' axis with respect to S with constant velocity. Show that Newton's Second Law of motion is invariant under Galilean transformation.
 - (b) Find the velocity and position as a function of time for a particle initially having velocity v₀ along the positive X axis at position x₀ and experiencing a linear retarding force F_r = -kv, k being a constant.
 - (c) (i) What is conservative force? Give two examples.
 - (ii) Show that the sum of kinetic and potential energies of a particle is constant in a conservative force field.
 (1+2)+3+[(2+1)+3]
- 6. (a) Define centre of mass of a system of particles. A system of particles consists of a 3 gm. mass located at (1, 0, -1), a 5 gm. mass at (-2, 1, 3) and a 2 gm. mass at (3, -1, 1). Find the position of the centre of mass.
 - (b) Prove that the total kinetic energy of a system of particles is equal to the kinetic energy of translation of centre of mass plus the kinetic energy of the motion about the centre of mass.
 - (c) A particle is moving in a circular orbit of radius R under a central force F(R), where $F(R) \propto R^{-\frac{3}{2}}$. Find the relation between time period (T) and R. (2+3)+4+3
- 7. (a) What are elastic and inelastic collisions?
 - (b) Two particles of identical mass m are moving towards each other along the same straight line with velocities u₁ and u₂ respectively. Find the expressions of velocities v₁ and v₂ of the particles after the elastic collision.
 - (c) Show that for a body moving under the central force, the motion is always confined in a plane.
 - (d) A particle moves along the x-axis under a potential $V(x) = \frac{1}{2}kx^2$; k > 0.
 - (i) Determine the point of equilibrium.
 - Investigate the nature of equilibrium.

2+4+2+(2+2)

- 8. A particle of mass m moves in xy-plane so that its position vector is $\vec{r} = a\cos\omega t \hat{i} + b\sin\omega t \hat{j}$; where a, b and ω are positive constants and a > b.
 - (a) Show that the particle moves in an ellipse.
 - (b) Show that the force acting on the particle is always directed towards the origin.
 - (c) Find the torque and the angular momentum of the particle about the origin.

3+3+(3+3)

- 9. (a) Derive the equation of continuity in a streamline fluid motion.
 - (b) Establish Euler's equation of steady incompressible fluid motion. How Pascal's Law is derived from Euler's equation?
 - (c) The upper surface of a fluid is at a height h_1 in an open container. There is a small hole at the side wall at a height h_2 from the bottom. Find the velocity of efflux. 3+(4+1)+4