2019

PHYSICS — GENERAL

Paper: GE/CC-3 Full Marks: 50

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

১ নং প্রশ্ন এবং আরও *যে-কোনো চারটি* প্রশের উত্তর দাও।

>। *যে-কোনো পাঁচটি* প্রশ্নের উত্তর দাও ঃ

2×6

- (ক) রুক্তাপ রেখ সমোফ রেখ অপেঞ্চা খাড়া কেন?
- থ) একটি দৃত্ দ্বি পরমাণুক অণুর স্বাতন্ত্রা সংখ্যা বের করো।
- ্গ) **ছির চাপে কোন্** অপমান্তায় নাইট্রোজেন অণুর গড় বর্গবেগের বর্ণমূল প্রমাণ চাপ ও তাপমান্তায় তার গড় বর্গবেগের বর্গমূল অপেকা দ্বিঙণ হবে ং
- (ঘ) ত'পগতিবিদ্যার শুন্যতম সূত্রটি লেখো।
- (%) গিবসের মুক্তশক্তির সংজ্ঞা দাও।
- (চ) মাইক্রো-অবস্থা ও ম্যাক্রো-অবস্থা বলতে কী বোঝার ?
- (ছ) 'ইকুয়াল ও প্রায়রি প্রবাবিলিটি' স্বীকার্যটি লেখে।
- ২। (ক) 4 gm গ্যাসকে 0°C থেকে 3°C তাপমাত্র! পর্যন্ত উত্তপ্ত করা হলে অভ্যন্তরীণ শক্তির পরিবর্তন নির্ণয় করো। স্থিত আয়তান গ্যাসের আপেক্ষিক তাপ $C_V = 0.172~{
 m cal/gm/°C}$.
 - (খ) রুদ্ধতাপ প্রসারণে কৃতকার্যের পরিমাণ নির্ণহ করো।
 - (গ) একটি কার্ণো ইঞ্জিনের দক্ষতা যদি (i) $1000 {
 m K}$ ও $500 {
 m K}$ এবং (ii) $x {
 m K}$ ও $1000 {
 m K}$ এই দুই তপেমাত্রার পক্ষার মধো সমান হয়, তাহলো x-এর মান নির্ণয় করো।
 - (ঘ) তপেগতিবিদ্যার তৃতীয় সুরটি লেখো।

৩। (ক) প্রমণ করে। ঃ

$$C_P - C_V - T \left(\frac{\partial P}{\partial T} \right)_V \left(\frac{\partial V}{\partial T} \right)_P$$

উপরোক্ত সম্পর্ক ব্যবহার করে 4°C তাপমতার জলের ক্ষেত্রে C_P এবং C_V -র সম্পর্ক নির্ণয় করো।

Please Turn Over

P (3rd Sm.)-Physics-G/(GE/CC-3)/CBCS

- (খ) প্রমাণ করো ៖ $Tds = C_V dT + T \left(\frac{\partial P}{\partial T} \right)_V dV$.
- (গ) জুল-উমসন প্রক্রিয়া কী? এটি কি সর্বদা শীতলতা সৃষ্টি করে?

(3+5)+3-(2+5)

- 8। (ক) ম্যাক্সওয়েলের গতিবেগ বন্টন সূত্রটি ব্যবহার করে সর্বাপেক্ষা সন্তাব্য গতিবেগ নির্ণয় করো।
 - (খ) হাইন্দ্রোজেন অপুর ব্যাস $2.5\,\mathrm{\AA}$ ও অ্যাভোগান্তো সংখ্যা $6.023 \times 10^{23} + 0^{\circ}\mathrm{C}$ তাপমাত্রা ও $1~\mathrm{atm}$ চাপে হাইন্দ্রোজেন অণুর গড় মুক্তপথ নির্ণয় করে।

(2)

- গে) শক্তির সমবিভাজন নীতিটি বিবৃত করে। এই নীতির সাহায্যে স্বাধীনতার মাত্রার সঙ্গে গ্যাসের দুই আপেক্ষিক তাপের অনুপাতের
 সম্পর্ক নির্ণয় করো।
- ৫। (ক) ক্লসিয়াস-ক্ল্রাপেরনের সুত্রটি লেখো।
 - (খ) ম্যাক্সওয়েলের তাপগতীয় সমীকরণের সাহায্যে দেখাও যে, $\left(\frac{\partial Q}{\partial P}\right)_T=-TV\alpha$ যেখানে α হল আয়তন প্রসারণ গুলান্ড।
 - (গ) হেলমহোৎসের মুক্তশক্তির অবকল রূপটি লেখো। এটি ব্যবহার করে ম্যাক্সওয়েলের নিম্নোক্ত তাপগভীয় সমীকরণটি প্রতিষ্ঠা করে ঃ

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$

(ছ) আদর্শ গ্যাসের ক্ষেত্রে C_p এবং C_{V^+} এর মধ্যে সম্পর্কটি লেখে।

2+0+(2+5)+5

- ৬। (ক) কৃষ্ণ বস্তুর বিকিরণের বৈশিষ্ট্যগুলি কী?
 - পরীক্ষালন্ধ ফল অনুযায়ী দৃটি বিভিন্ন তাপমারায় কৃষ্ণবস্তুর শক্তিবন্টনের লেখচিত্র অন্ধন করো।
 - ্গ) কৃষ্ণবস্তুর বিকিরণ সংক্রান্ত প্লাক্তের সূত্রটি বিবৃত করো এবং তা হতে ভীনের সূত্র এবং রাজে-জিন্সের সূত্রদূটি প্রমাণ করো। ২÷২+(২+২+২)
- - (খ) বোস-আইনস্টাইন ও ফার্মি-ডিরাক বন্টনসূত্র দুটি বিবৃত করে।।
 - (গ) তাপমাত্রা T − 0K এবং T ≠ 0K-এ ফার্মি-ডিরাক বন্টন অপেক্ষকের লেখচিত্র অন্ধন করো। 8+(২+২)+২

[English Version]

The figures in the margin indicate full marks.

Answer question no. 1 and any four more questions from the rest.

1. Answer any five questions :

2×5

- (a) Adiabatics are steeper than isothermals Explain,
- (b) Find the number of degrees of freedom of a rigid diatomic molecule.
- (c) At what temperature will root mean square speed of nitrogen molecule be double its value at N.T.P., pressure remaining constant?
- (d) State Zeroth law of thermodynamics.
- (c) Define Gibbs free energy.
- (f) What is meant by micro-state and macro-state?
- (g) State the postulate of equal a priori probability.
- 2. (a) Calculate the change in internal energy when 4 gm of air is heated from 0°C to 3°C. Specific heat of air at constant volume is 0.172 cal/gm/°C.
 - (b) Calculate the amount of work done during an adiabatic expansion of a gas.
 - (c) A Carnot engine has the same efficiency (i) between 1000K and 500K and (ii) between xK and 1000K. Calculate the temperature x.
 - (d) State the third law of thermodynamics.

31312-2

3. (a) Prove that : $C_P - C_V = T \left(\frac{\partial P}{\partial T} \right)_V \left(\frac{\partial V}{\partial T} \right)_P$

using the above relation, find the relation between C_P and C_V in case of water at 4°C.

- (b) Prove that $Tds = C_V dT + T \left(\frac{\partial P}{\partial T} \right)_V dV$.
- (c) What is Joule-Thomson effect? Does it always produce cooling?

(311)+3+(2-1)

- 4. (a) Using Maxwell's law of distribution of velocities, calculate most probable velocity.
 - (b) The diameter of H_2 molecule is 2.5 $\mathring{\Lambda}$ and Avogadro Number is 6.023×10²³. At 0°C temperature and 1 atm. pressure; calculate the mean free path of H_2 molecule.
 - (c) State law of equipartition of energy. Using this law, establish the relation between degrees of freedom and the ratio of two specific heats of a gas.

 3+3+(2+2)

Please Turn Over

P (3rd Sm.)-Physics-G/(GE/CC-3)/CBCS

(4)

- 5. (a) Write down Clausius-Clapeyron equation.
 - (b) Using Maxwell's thermodynamic relation, show that $\left(\frac{\partial Q}{\partial P}\right)_T = -TV\alpha$ where α is coefficient of volume expansion.
 - (c) Write down the differential form of Helmholtz free energy. Using it, establish the following Maxwell's relation:

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$

(d) Write down the relation between C_P and C_V for ideal gas.

2+3+(1-3)+1

- 6. (a) What are the characteristics of black-body radiation?
 - (b) Based on experimental results, draw the energy distribution curve of black-body radiation at two different temperatures.
 - (c) State Planck's law of black-body radiation and from it, deduce Wein's law and Rayleigh-Jeans law. 2-2+(2+2-2)
- 7. (a) Three different particles having total energy 9ϵ are distributed in energy levels having energy $0, \epsilon, 2\epsilon, 3\epsilon$ and 4ϵ . Find the number of microstates and macrostates.
 - (b) State Bose-Einstein and Fermi-Dirac distribution law.
 - (c) Draw Fermi-Dirac distribution function at temperature T = 0K and $T \neq 0K$.

4-(2+2)+2