Are these functions?

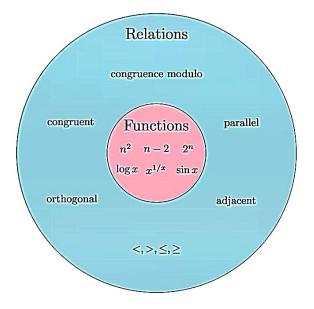
Problem

- Are these functions?
 - rational p = rational q
 - -m < n
 - $-\ d$ does not divide n
 - $-\ n$ leaves a remainder of 5 when divided by d
 - line ℓ_1 is parallel to line ℓ_2
 - person a is a parent of person b
 - triangle t_1 is congruent to triangle t_2
 - edge e_1 is adjacent to edge e_2
 - matrix A is orthogonal to matrix B

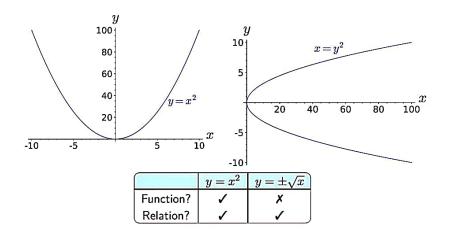
No! (Because an input is mapped to more than one output.)

What are these mappings called?

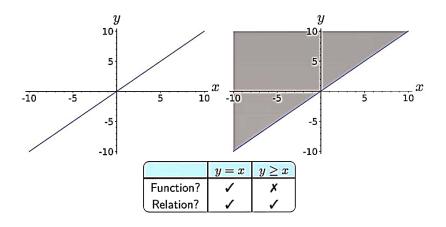
Relations!



Functions vs. relations



Functions vs. relations



What is a binary relation?

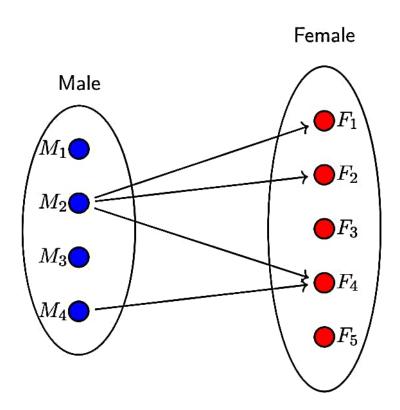
Definition

- If A and B are sets, then a binary relation from A to B is a subset of $A \times B$.
- We say that x is related to y by R, written x R y, if, and only if, $(x,y) \in R$. Denoted as x R $y \Leftrightarrow (x,y) \in R$.

Relationship

• Set of all functions is a proper subset of the set of all relations.

Example: Marriage relation



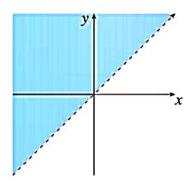
Example: Less than

Problem

• A relation $L: \mathbb{R} \to \mathbb{R}$ as follows. For all real numbers x and y, $(x,y) \in L \Leftrightarrow x \ L \ y \Leftrightarrow x < y$. Draw the graph of L as a subset of the Cartesian plane $\mathbb{R} \times \mathbb{R}$.

Solution

- $L = \{(-10.678, 30.23), (17.13, 45.98), (100/9, 200), \ldots\}$
- Graph:



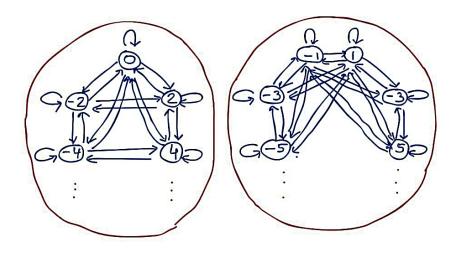
Example: Congruence modulo 2

Problem

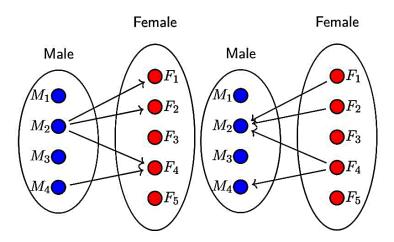
- Define a relation $C: \mathbb{Z} \to \mathbb{Z}$ as follows. For all $(m, n) \in \mathbb{Z} \times \mathbb{Z}$, $m \ C \ n \Leftrightarrow m-n$ is even.
- ullet Prove that if n is any odd integer, then $n \ C \ 1$.

- $A = \{(2,4), (56,10), (-88,-64), \ldots\}$ $B = \{(7,7), (57,11), (-87,-63), \ldots\}$ $C = A \cup B$
- Proof. $(n,1) \in C \Leftrightarrow n \ C \ 1 \Leftrightarrow n-1$ is even Suppose n is odd i.e., n=2k+1 for some integer k. This implies that n-1=2k is even.

Example: Congruence modulo 2



Inverse of a relation



Inverse of a relation

Definition

- Let R be a relation from A to B.

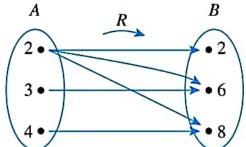
 Then inverse relation R^{-1} from B to A is: $R^{-1} = \{(y,x) \in B \times A \mid (x,y) \in R\}.$
- For all $x \in A$ and $y \in B$, $(x,y) \in R \Leftrightarrow (y,x) \in R^{-1}$

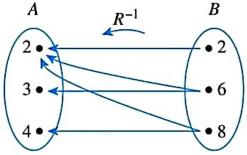
Example: Inverse of a finite relation

Problem

- Let $A=\{2,3,4\}$ and $B=\{2,6,8\}$. Let R:A to B. For all $(a,b)\in A\times B$, $a\mathrel{R} b\Leftrightarrow a\mid b$
- Determine R and R^{-1} . Draw arrow diagrams for both. Describe R^{-1} in words.

- $R = \{(2,2), (2,6), (2,8), (3,6), (4,8)\}$ $R^{-1} = \{(2,2), (6,2), (8,2), (6,3), (8,4)\}$
- $\begin{tabular}{l} \bullet & \mbox{For all } (b,a) \in B \times A, \\ (b,a) \in R^{-1} \Leftrightarrow b \mbox{ is a multiple of } a \end{tabular}$





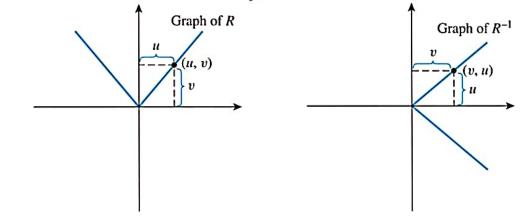
Example: Inverse of an infinite relation

Problem

- Define a relation R from $\mathbb R$ to $\mathbb R$ as follows: For all $(u,v)\in\mathbb R\times\mathbb R$, $u\ R\ v\Leftrightarrow v=2|u|$.
- Draw the graphs of R and R^{-1} in the Cartesian plane. Is R^{-1} a function?

Solution

• R^{-1} is not a function. Why?



Relation on a set

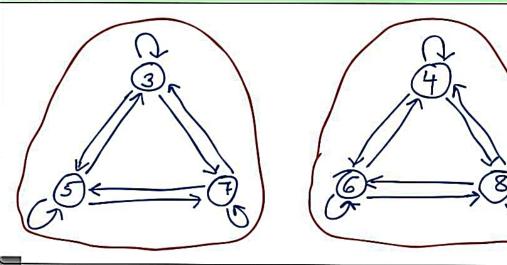
Definition

- ullet A relation on a set A is a relation from A to A.
- The resulting arrow diagram is a directed graph possibly containing loops

Problem

• Let $A = \{3, 4, 5, 6, 7, 8\}$. Define relation R on A as follows. For all $x, y \in A$, $x R y \Leftrightarrow 2|(x - y)$. Draw the graph of R.

Solution

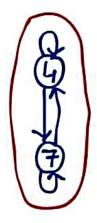


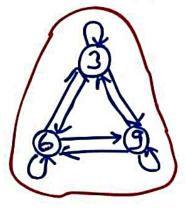
16

Reflexivity, symmetry, and transitivity

Properties

• Set $A = \{2, 3, 4, 6, 7, 9\}$ Relation R on set A is: $\forall x, y \in A$, $x R y \Leftrightarrow 3 \mid (x - y)$





- Reflexivity. $\forall x \in A, (x, x) \in R$.
- Symmetry. $\forall x,y \in A$, if $(x,y) \in R$, then $(y,x) \in R$.
- Transitivity.

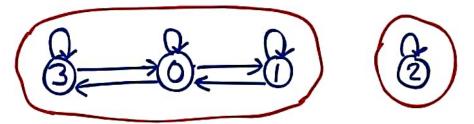
 $\forall x,y,z\in A$, if $(x,y)\in R$ and $(y,z)\in R$, then $(x,z)\in R$.

Example

Problem

 $A = \{0,1,2,3\}.$ $R = \{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}.$ Is R reflexive, symmetric, and transitive?

Solution

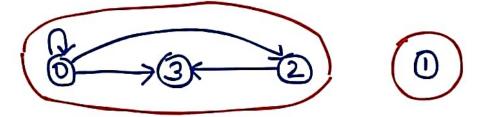


- Reflexive. $\forall x \in A, (x, x) \in R$.
- Symmetric. $\forall x,y \in A$, if $(x,y) \in R$, then $(y,x) \in R$.
- Not transitive. e.g.: $(1,0), (0,3) \in R$ but $(1,3) \notin R$. $\exists x,y,z \in A$, if $(x,y) \in R$ and $(y,z) \in R$, then $(x,z) \notin R$.

Example

Problem

• $A = \{0, 1, 2, 3\}$. $R = \{(0, 0), (0, 2), (0, 3), (2, 3)\}$. Is R reflexive, symmetric, and transitive?



- Not reflexive. e.g.: $(1,1) \not\in R$. $\exists x \in A, (x,x) \not\in R$.
- Not symmetric. e.g.: $(0,3) \in R$ but $(3,0) \notin R$. $\exists x,y \in A$, if $(x,y) \in R$, then $(y,x) \notin R$.
- Transitive. $\forall x,y,z\in A \text{, if } (x,y)\in R \text{ and } (y,z)\in R \text{, then } (x,z)\in R.$

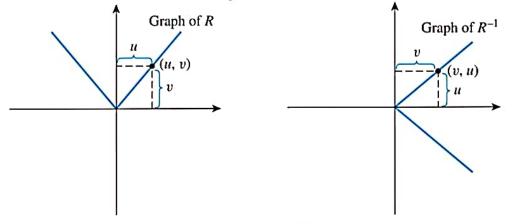
Example: Inverse of an infinite relation

Problem

- Define a relation R from $\mathbb R$ to $\mathbb R$ as follows: For all $(u,v)\in\mathbb R\times\mathbb R$, $u\ R\ v\Leftrightarrow v=2|u|$.
- Draw the graphs of R and R^{-1} in the Cartesian plane. Is R^{-1} a function?

Solution

• R^{-1} is not a function. Why?



Relation on a set

Definition

- ullet A relation on a set A is a relation from A to A.
- The resulting arrow diagram is a directed graph possibly containing loops

Example: Less than

Problem

• Suppose R is a relation on $\mathbb R$ such that $x \ R \ y \Leftrightarrow x < y$. Is R an equivalence relation?

Solution

- Not reflexive. e.g.: $0 \not< 0$. $\exists x \in \mathbb{R}, x \not< x$.
- Not symmetric. e.g.: 0 < 1 but $1 \not< 0$. $\exists x, y \in \mathbb{R}$, if x < y, then $y \not< x$.
- Transitive. $\forall x, y, z \in \mathbb{R}$, if x < y and y < z, then x < z. So, R is not an equivalence relation.

Example: Equality (or Identity relation)

Problem

• Suppose R is a relation on $\mathbb R$ such that $x R y \Leftrightarrow x = y$. Is R an equivalence relation?

Solution

- Reflexive. $\forall x \in \mathbb{R}, x = x$.
- Symmetric. $\forall x, y \in \mathbb{R}$, if x = y, then y = x.
- Transitive. $\forall x, y, z \in \mathbb{R}$, if x = y and y = z, then x = z.

So, R is an equivalence relation.

Equivalence classes: $[a] = \{a\}.$

Example: Less than

Problem

• Suppose R is a relation on $\mathbb R$ such that $x \ R \ y \Leftrightarrow x < y$. Is R an equivalence relation?

Solution

- Not reflexive. e.g.: $0 \not< 0$. $\exists x \in \mathbb{R}, x \not< x$.
- Not symmetric. e.g.: 0 < 1 but $1 \nleq 0$. $\exists x, y \in \mathbb{R}$, if x < y, then $y \nleq x$.
- Transitive. $\forall x, y, z \in \mathbb{R}$, if x < y and y < z, then x < z.

So, R is not an equivalence relation.

Example: Equality (or Identity relation)

Problem

• Suppose R is a relation on $\mathbb R$ such that $x \ R \ y \Leftrightarrow x = y$. Is R an equivalence relation?

Solution

- Reflexive. $\forall x \in \mathbb{R}, x = x$.
- Symmetric. $\forall x, y \in \mathbb{R}$, if x = y, then y = x.
- Transitive. $\forall x, y, z \in \mathbb{R}$, if x = y and y = z, then x = z.

So, R is an equivalence relation.

Equivalence classes: $[a] = \{a\}.$

Example: Partition

Problem

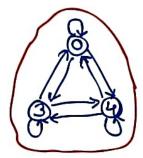
- Suppose R is a partition relation on A such that $\forall x,y \in A$, $x R y \Leftrightarrow x,y \in A_i$ for some subset A_i .
- $A = \{0, 1, 2, 3, 4\}$. Partition of A is $\{\{0, 3, 4\}, \{1\}, \{2\}\}$. Is R an equivalence relation?

Example: Partition

Problem

- Suppose R is a partition relation on A such that $\forall x, y \in A$, $x R y \Leftrightarrow x, y \in A_i$ for some subset A_i .
- $A = \{0, 1, 2, 3, 4\}$. Partition of A is $\{\{0, 3, 4\}, \{1\}, \{2\}\}$. Is R an equivalence relation?

Solution



- R is reflexive, symmetric, and transitive.
- ullet So, R is an equivalence relation.
- Equivalence classes: $[0] = \{0, 3, 4\}, [1] = \{1\}, \text{ and } [2] = \{2\}.$

Example: Partition

Problem

• Suppose R is a partition relation on A such that $\forall x,y\in A,\ x\ R\ y\Leftrightarrow x,y\in A_i$ for some subset A_i . Is R an equivalence relation?

Solution

- Reflexive. $\forall m \in A$, $(m, m) \in R$.
- Symmetric. $\forall m, n \in A$, if $(m, n) \in R$, then $(n, m) \in R$.
- Transitive.

 $\forall m, n, p \in A$, if $(m, n) \in R$ and $(n, p) \in R$, then $(m, p) \in R$.

So, R is an equivalence relation.

Example: Partition

Problem

- Suppose R is a partition relation on A such that $\forall x, y \in A$, $x R y \Leftrightarrow x, y \in A_i$ for some subset A_i .
- $A = \{0, 1, 2, 3, 4\}$. Partition of A is $\{\{0, 3, 4\}, \{1\}, \{2\}\}$. Is R an equivalence relation?

Solution

- ullet R is reflexive, symmetric, and transitive.
- ullet So, R is an equivalence relation.
- Equivalence classes: $[0] = \{0, 3, 4\}, [1] = \{1\}, \text{ and } [2] = \{2\}.$

Example: Partition

Problem

• Suppose R is a partition relation on A such that $\forall x,y\in A,\ x\ R\ y\Leftrightarrow x,y\in A_i$ for some subset $A_i.$ Is R an equivalence relation?

Solution

- Reflexive. $\forall m \in A, (m, m) \in R$.
- Symmetric. $\forall m, n \in A$, if $(m, n) \in R$, then $(n, m) \in R$.
- Transitive.

 $\forall m,n,p\in A, \text{ if } (m,n)\in R \text{ and } (n,p)\in R, \text{ then } (m,p)\in R.$ So, R is an equivalence relation.

Example: Least element

Problem

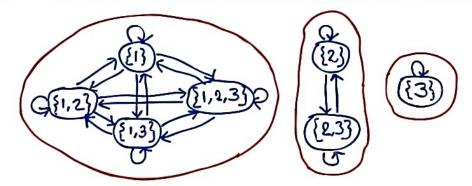
• Let X denote the power set of $\{1,2,3\}$. Suppose R is a relation on X such that $\forall A,B\in X$ A R $B\Leftrightarrow$ Least element of A is same as that of B. Is R an equivalence relation?

Example: Least element

Problem

• Let X denote the power set of $\{1,2,3\}$. Suppose R is a relation on X such that $\forall A,B\in X$ $A\ R\ B\Leftrightarrow \text{Least element of }A$ is same as that of B. Is R an equivalence relation?

Solution



- ullet R is reflexive, symmetric, and transitive.
- ullet So, R is an equivalence relation.
- Equivalence classes: [{1}], [{2}], and [{3}].

Example: Congruence modulo 3

Problem

• Suppose R is a relation on $\mathbb Z$ such that $m \ R \ n \Leftrightarrow 3 \mid (m-n)$. Is R an equivalence relation?

Solution

- Reflexive. $\forall m \in A, 3 \mid (m-m)$.
- Symmetric. $\forall m, n \in A$, if $3 \mid (m-n)$, then $3 \mid (n-m)$.
- Transitive.

 $\forall m,n,p\in A\text{, if }3\mid (m-n)\text{ and }3\mid (n-p)\text{, then }3\mid (m-p).$

So, ${\cal R}$ is an equivalence relation.

Example: Congruence modulo 3

Solution

· Equivalence classes.

Three distinct equivalence classes are [0], [1], and [2].

$$[0] = \{a \in \mathbb{Z} \mid a \equiv 0 \pmod{3}\} = \{0, \pm 3, \pm 6, \pm 9, \ldots\}$$

$$[1] = \{a \in \mathbb{Z} \mid a \equiv 1 \pmod{3}\} = \{1, 1 \pm 3, 1 \pm 6, 1 \pm 9, \ldots\}$$

$$[2] = \{a \in \mathbb{Z} \mid a \equiv 2 \pmod{3}\} = \{2, 2 \pm 3, 2 \pm 6, 2 \pm 9, \ldots\}$$

Intuition.

- [0] =Set of integers when divided by 3 leave a remainder of 0.
- [1] = Set of integers when divided by 3 leave a remainder of 1.
- [2] = Set of integers when divided by 3 leave a remainder of 2.

Congruence modulo n

Definition

Let a and b be integers and n be a positive integer.

The following statements are equivalent:

ullet a and b leave the same remainder when divided by n.

$$a \bmod n = b \bmod n$$
.

- \bullet $n \mid (a-b)$.
- \overline{a} is congruent to b modulo n.

$$a \equiv b \pmod{n}$$

• a = b + kn for some integer k.

Examples

- $12 \equiv 7 \pmod{5}$
- $6 \equiv -6 \pmod{4}$
- $3 \equiv 3 \pmod{7}$

Example: Congruence modulo *n*

Problem

• Suppose R is a relation on \mathbb{Z} such that $a R b \Leftrightarrow a \equiv b \pmod{n}$. Is R an equivalence relation?

Solution

- Reflexive. $\forall a \in \mathbb{Z}, a \equiv a \pmod{n}$.
- Symmetric. $\forall a, b \in \mathbb{Z}$, if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.
- ullet Transitive. $\forall a,b,c\in\mathbb{Z}$, if $a\equiv b\pmod n$ and $b\equiv c\pmod n$, then

So, R is an equivalence relation.

 $a \equiv c \pmod{n}$.

Equivalence classes: $[0], [1], \ldots, [n-1]$.

Example: Congruence modulo *n*

Solution

- R is Reflexive. Show that $\forall a \in \mathbb{Z}, n \mid (a-a)$. We know that a-a=0 and $n \mid 0$. Hence, $n \mid (a-a)$.
- R is Symmetric. Show that $\forall a,b\in\mathbb{Z}$, if $a\equiv b\pmod n$, then $b\equiv a\pmod n$. We see that $a\equiv b\pmod n$ means $n\mid (a-b)$.

Let (a - b) = nk, for some integer k.

$$\implies -(a-b) = -nk$$
 (multiply both sides by -1)

$$\implies (b-a) = n(-k)$$
 (simplify)

$$\implies n \mid (b-a)$$
 (-k is an integer; use defn. of divisibility) In other words, $b \equiv a \pmod{n}$.

Example: Congruence modulo *n*

Solution

• R is transitive. Show that $\forall a, b, c \in \mathbb{Z}$, if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

We see that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ imply that $n \mid (a-b)$ and $n \mid (b-c)$, respectively.

Let (a-b)=nk and $(b-c)=n\ell$, for some integers k and ℓ . Adding the two equations, we get

 $(a-c)=(k+\ell)n$, where $k+\ell$ is an integer because addition is closed on integers.

By definition of divisibility, $n \mid (a - c)$ or $a \equiv c \pmod{n}$.

Modular arithmetic

Modular arithmetic

Let a, b, c, d, n be integers with n > 1.

Suppose $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Then

- 1. $(a+b) \equiv (c+d) \pmod{n}$
- 2. $(a-b) \equiv (c-d) \pmod{n}$
- 3. $(ab) \equiv (cd) \pmod{n}$
- 4. $(a^m) \equiv (c^m) \pmod{n}$ for all positive integers m

Units digit

Problem

• What is the units digit of 1483^{8650} ?

- \bullet Units digit of 1483^{8650} is the units digit of 3^{8650} .
- Units digit of $3^0, 3^1, 3^2, 3^3$, and 3^4 are 1, 3, 9, 7, and 1, respectively.
- Periodicity is 4. Therefore,
- Units digit of 3^{4k+0} is 1.

Units digit

Problem

• What is the units digit of 1483^{8650} ?

Solution

- Units digit of 1483^{8650} is the units digit of 3^{8650} .
- Units digit of 3^0 , 3^1 , 3^2 , 3^3 , and 3^4 are 1, 3, 9, 7, and 1, respectively.
- Periodicity is 4. Therefore,
- Units digit of 3^{4k+0} is 1.

Units digit of 3^{4k+1} is 3.

Units digit of 3^{4k+2} is 9.

Units digit of 3^{4k+3} is 7.

- Units digit of $3^{8650} = 3^{4 \times 2162 + 2}$ is 9.
- Hence, the answer is 9.

Equation solving

Problem

• Use modular arithmetic to solve the equations.

$$16x + 12y = 32$$
 and $40x - 9y = 7$.

Solution

• Apply mod 3 on both sides of the first equation.

$$(16x + 12y) \bmod 3 \equiv 32 \bmod 3$$

$$\implies x \equiv 2 \mod 3$$

Similarly, apply $\mod 3$ on both sides of the second equation.

$$(40x - 9y) \bmod 3 \equiv 7 \bmod 3$$

$$\implies x \equiv 1 \mod 3$$

These two congruences are contradictory.

Hence, the system of equations does not have a solution.

Universal product code (UPC)

- Check digits are used to reduce errors universal product codes, tracking operations for shipping operations, book identification numbers (ISBNs), vehicle numbers, ID for the healthcare industry, etc.
- UPC is a 12-digit number, where the last digit is the check digit.
- Suppose the first 11 digits of the UPC are $a_1a_2a_3a_4a_5a_6a_7a_8a_9a_{10}a_{11}$. Then the check digit can be computed using the following formula

$$a_{12} = (210 - k) \mod 10$$
, where $k = 3(a_1 + a_3 + \dots + a_{11}) + (a_2 + a_4 + \dots + a_{10})$

Universal product code (UPC)

Problem

• The first eleven digits of the UPC for a package of ink cartridges are 88442334010. What is the check digit?

Solution

• k = 3(8+4+2+3+0+0) + (8+4+3+4+1) = 71check digit = $(210-71) \mod 10 = 9$ • Use modular arithmetic to solve the equations. 16x + 12y = 32 and 40x - 9y = 7.

Solution

ullet Apply $\mod 3$ on both sides of the first equation.

$$(16x + 12y) \bmod 3 \equiv 32 \bmod 3$$

$$\implies x \equiv 2 \bmod 3$$

Similarly, apply $\bmod\ 3$ on both sides of the second equation.

$$(40x - 9y) \bmod 3 \equiv 7 \bmod 3$$

$$\implies x \equiv 1 \mod 3$$

• These two congruences are contradictory.

Hence, the system of equations does not have a solution.

Universal product code (UPC)

- Check digits are used to reduce errors universal product codes, tracking operations for shipping operations, book identification numbers (ISBNs), vehicle numbers, ID for the healthcare industry, etc.
- UPC is a 12-digit number, where the last digit is the check digit.
- Suppose the first 11 digits of the UPC are $a_1a_2a_3a_4a_5a_6a_7a_8a_9a_{10}a_{11}$. Then the check digit can be computed using the following formula

$$a_{12} = (210 - k) \mod 10$$
, where

$$k = 3(a_1 + a_3 + \dots + a_{11}) + (a_2 + a_4 + \dots + a_{10})$$

Universal product code (UPC)

Problem

• The first eleven digits of the UPC for a package of ink cartridges are 88442334010. What is the check digit?

Solution

• k = 3(8+4+2+3+0+0) + (8+4+3+4+1) = 71check digit = $(210-71) \mod 10 = 9$

Are these functions?

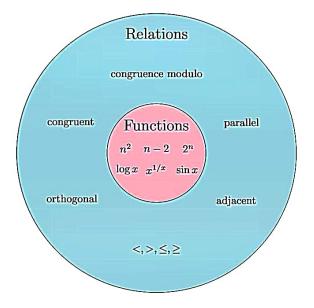
Problem

- Are these functions?
 - rational p = rational q
 - -m < n
 - $-\ d$ does not divide n
 - $-\ n$ leaves a remainder of 5 when divided by d
 - line ℓ_1 is parallel to line ℓ_2
 - person a is a parent of person b
 - triangle t_1 is congruent to triangle t_2
 - edge e_1 is adjacent to edge e_2
 - matrix A is orthogonal to matrix B

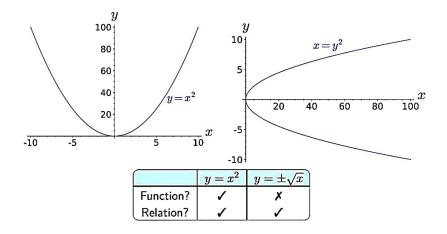
No! (Because an input is mapped to more than one output.)

What are these mappings called?

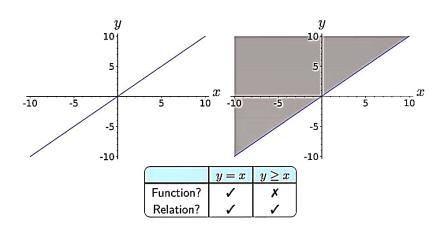
Relations!



Functions vs. relations



Functions vs. relations



What is a binary relation?

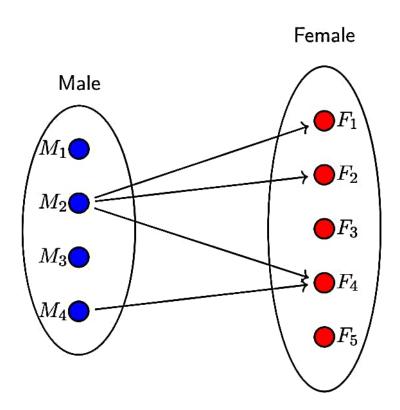
Definition

- If A and B are sets, then a binary relation from A to B is a subset of $A \times B$.
- We say that x is related to y by R, written x R y, if, and only if, $(x,y) \in R$. Denoted as x R $y \Leftrightarrow (x,y) \in R$.

Relationship

• Set of all functions is a proper subset of the set of all relations.

Example: Marriage relation



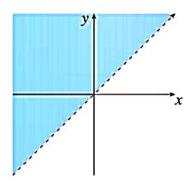
Example: Less than

Problem

• A relation $L: \mathbb{R} \to \mathbb{R}$ as follows. For all real numbers x and y, $(x,y) \in L \Leftrightarrow x \ L \ y \Leftrightarrow x < y$. Draw the graph of L as a subset of the Cartesian plane $\mathbb{R} \times \mathbb{R}$.

Solution

- $L = \{(-10.678, 30.23), (17.13, 45.98), (100/9, 200), \ldots\}$
- Graph:



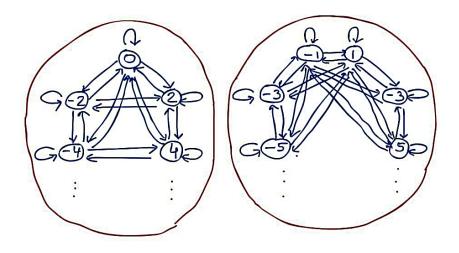
Example: Congruence modulo 2

Problem

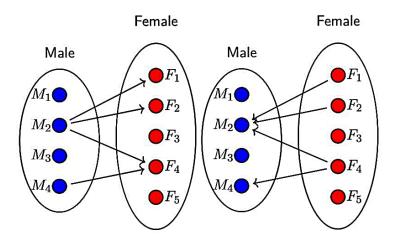
- Define a relation $C: \mathbb{Z} \to \mathbb{Z}$ as follows. For all $(m, n) \in \mathbb{Z} \times \mathbb{Z}$, $m \ C \ n \Leftrightarrow m-n$ is even.
- ullet Prove that if n is any odd integer, then $n \ C \ 1$.

- $A = \{(2,4), (56,10), (-88,-64), \ldots\}$ $B = \{(7,7), (57,11), (-87,-63), \ldots\}$ $C = A \cup B$
- Proof. $(n,1) \in C \Leftrightarrow n \ C \ 1 \Leftrightarrow n-1$ is even Suppose n is odd i.e., n=2k+1 for some integer k. This implies that n-1=2k is even.

Example: Congruence modulo 2



Inverse of a relation



Inverse of a relation

Definition

- Let R be a relation from A to B.

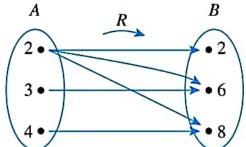
 Then inverse relation R^{-1} from B to A is: $R^{-1} = \{(y,x) \in B \times A \mid (x,y) \in R\}.$
- For all $x \in A$ and $y \in B$, $(x,y) \in R \Leftrightarrow (y,x) \in R^{-1}$

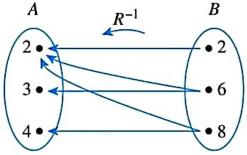
Example: Inverse of a finite relation

Problem

- Let $A=\{2,3,4\}$ and $B=\{2,6,8\}$. Let R:A to B. For all $(a,b)\in A\times B$, $a\mathrel{R} b\Leftrightarrow a\mid b$
- Determine R and R^{-1} . Draw arrow diagrams for both. Describe R^{-1} in words.

- $R = \{(2,2), (2,6), (2,8), (3,6), (4,8)\}$ $R^{-1} = \{(2,2), (6,2), (8,2), (6,3), (8,4)\}$
- $\begin{tabular}{l} \bullet & \mbox{For all } (b,a) \in B \times A, \\ (b,a) \in R^{-1} \Leftrightarrow b \mbox{ is a multiple of } a \end{tabular}$





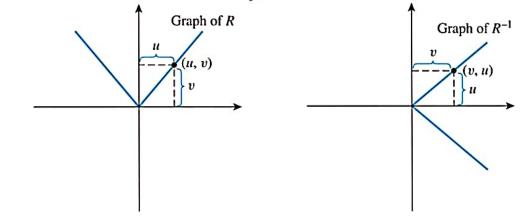
Example: Inverse of an infinite relation

Problem

- Define a relation R from $\mathbb R$ to $\mathbb R$ as follows: For all $(u,v)\in\mathbb R\times\mathbb R$, $u\ R\ v\Leftrightarrow v=2|u|$.
- Draw the graphs of R and R^{-1} in the Cartesian plane. Is R^{-1} a function?

Solution

• R^{-1} is not a function. Why?



Relation on a set

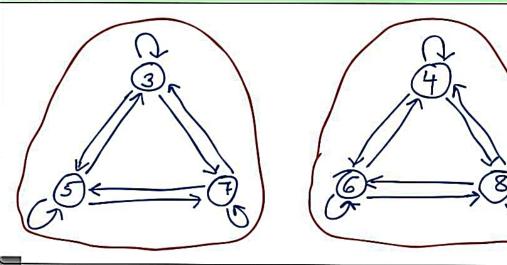
Definition

- ullet A relation on a set A is a relation from A to A.
- The resulting arrow diagram is a directed graph possibly containing loops

Problem

• Let $A = \{3, 4, 5, 6, 7, 8\}$. Define relation R on A as follows. For all $x, y \in A$, $x R y \Leftrightarrow 2|(x - y)$. Draw the graph of R.

Solution

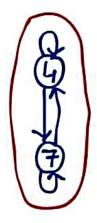


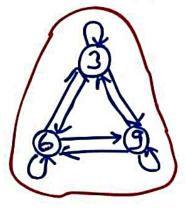
16

Reflexivity, symmetry, and transitivity

Properties

• Set $A = \{2, 3, 4, 6, 7, 9\}$ Relation R on set A is: $\forall x, y \in A$, $x R y \Leftrightarrow 3 \mid (x - y)$





- Reflexivity. $\forall x \in A, (x, x) \in R$.
- Symmetry. $\forall x,y \in A$, if $(x,y) \in R$, then $(y,x) \in R$.
- Transitivity.

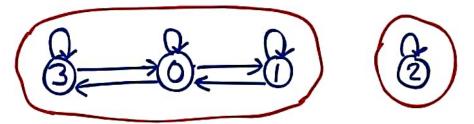
 $\forall x,y,z\in A$, if $(x,y)\in R$ and $(y,z)\in R$, then $(x,z)\in R$.

Example

Problem

 $A = \{0,1,2,3\}.$ $R = \{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}.$ Is R reflexive, symmetric, and transitive?

Solution

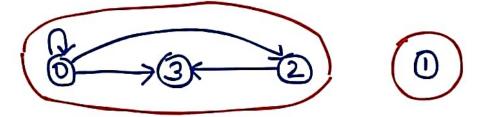


- Reflexive. $\forall x \in A, (x, x) \in R$.
- Symmetric. $\forall x,y \in A$, if $(x,y) \in R$, then $(y,x) \in R$.
- Not transitive. e.g.: $(1,0), (0,3) \in R$ but $(1,3) \notin R$. $\exists x,y,z \in A$, if $(x,y) \in R$ and $(y,z) \in R$, then $(x,z) \notin R$.

Example

Problem

• $A = \{0, 1, 2, 3\}$. $R = \{(0, 0), (0, 2), (0, 3), (2, 3)\}$. Is R reflexive, symmetric, and transitive?



- Not reflexive. e.g.: $(1,1) \not\in R$. $\exists x \in A, (x,x) \not\in R$.
- Not symmetric. e.g.: $(0,3) \in R$ but $(3,0) \notin R$. $\exists x,y \in A$, if $(x,y) \in R$, then $(y,x) \notin R$.
- Transitive. $\forall x,y,z\in A \text{, if } (x,y)\in R \text{ and } (y,z)\in R \text{, then } (x,z)\in R.$

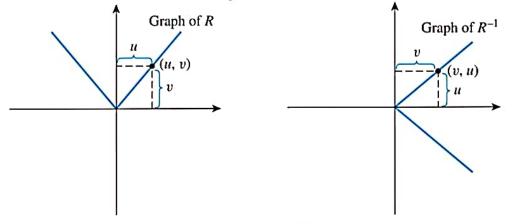
Example: Inverse of an infinite relation

Problem

- Define a relation R from $\mathbb R$ to $\mathbb R$ as follows: For all $(u,v)\in\mathbb R\times\mathbb R$, $u\ R\ v\Leftrightarrow v=2|u|$.
- Draw the graphs of R and R^{-1} in the Cartesian plane. Is R^{-1} a function?

Solution

• R^{-1} is not a function. Why?



Relation on a set

Definition

- ullet A relation on a set A is a relation from A to A.
- The resulting arrow diagram is a directed graph possibly containing loops

Example: Less than

Problem

• Suppose R is a relation on $\mathbb R$ such that $x \ R \ y \Leftrightarrow x < y$. Is R an equivalence relation?

Solution

- Not reflexive. e.g.: $0 \not< 0$. $\exists x \in \mathbb{R}, x \not< x$.
- Not symmetric. e.g.: 0 < 1 but $1 \not< 0$. $\exists x, y \in \mathbb{R}$, if x < y, then $y \not< x$.
- Transitive. $\forall x, y, z \in \mathbb{R}$, if x < y and y < z, then x < z. So, R is not an equivalence relation.

Example: Equality (or Identity relation)

Problem

• Suppose R is a relation on $\mathbb R$ such that $x R y \Leftrightarrow x = y$. Is R an equivalence relation?

Solution

- Reflexive. $\forall x \in \mathbb{R}, x = x$.
- Symmetric. $\forall x, y \in \mathbb{R}$, if x = y, then y = x.
- Transitive. $\forall x, y, z \in \mathbb{R}$, if x = y and y = z, then x = z.

So, R is an equivalence relation.

Equivalence classes: $[a] = \{a\}.$

Example: Less than

Problem

• Suppose R is a relation on $\mathbb R$ such that $x \ R \ y \Leftrightarrow x < y$. Is R an equivalence relation?

Solution

- Not reflexive. e.g.: $0 \not< 0$. $\exists x \in \mathbb{R}, x \not< x$.
- Not symmetric. e.g.: 0 < 1 but $1 \nleq 0$. $\exists x, y \in \mathbb{R}$, if x < y, then $y \nleq x$.
- Transitive. $\forall x, y, z \in \mathbb{R}$, if x < y and y < z, then x < z.

So, R is not an equivalence relation.

Example: Equality (or Identity relation)

Problem

• Suppose R is a relation on $\mathbb R$ such that $x \ R \ y \Leftrightarrow x = y$. Is R an equivalence relation?

Solution

- Reflexive. $\forall x \in \mathbb{R}, x = x$.
- Symmetric. $\forall x, y \in \mathbb{R}$, if x = y, then y = x.
- Transitive. $\forall x, y, z \in \mathbb{R}$, if x = y and y = z, then x = z.

So, R is an equivalence relation.

Equivalence classes: $[a] = \{a\}.$

Example: Partition

Problem

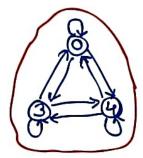
- Suppose R is a partition relation on A such that $\forall x,y \in A$, $x R y \Leftrightarrow x,y \in A_i$ for some subset A_i .
- $A = \{0, 1, 2, 3, 4\}$. Partition of A is $\{\{0, 3, 4\}, \{1\}, \{2\}\}$. Is R an equivalence relation?

Example: Partition

Problem

- Suppose R is a partition relation on A such that $\forall x, y \in A$, $x R y \Leftrightarrow x, y \in A_i$ for some subset A_i .
- $A = \{0, 1, 2, 3, 4\}$. Partition of A is $\{\{0, 3, 4\}, \{1\}, \{2\}\}$. Is R an equivalence relation?

Solution



- R is reflexive, symmetric, and transitive.
- ullet So, R is an equivalence relation.
- Equivalence classes: $[0] = \{0, 3, 4\}, [1] = \{1\}, \text{ and } [2] = \{2\}.$

Example: Partition

Problem

• Suppose R is a partition relation on A such that $\forall x,y\in A,\ x\ R\ y\Leftrightarrow x,y\in A_i$ for some subset A_i . Is R an equivalence relation?

Solution

- Reflexive. $\forall m \in A$, $(m, m) \in R$.
- Symmetric. $\forall m, n \in A$, if $(m, n) \in R$, then $(n, m) \in R$.
- Transitive.

 $\forall m, n, p \in A$, if $(m, n) \in R$ and $(n, p) \in R$, then $(m, p) \in R$.

So, R is an equivalence relation.

Example: Partition

Problem

- Suppose R is a partition relation on A such that $\forall x, y \in A$, $x R y \Leftrightarrow x, y \in A_i$ for some subset A_i .
- $A = \{0, 1, 2, 3, 4\}$. Partition of A is $\{\{0, 3, 4\}, \{1\}, \{2\}\}$. Is R an equivalence relation?

Solution

- ullet R is reflexive, symmetric, and transitive.
- ullet So, R is an equivalence relation.
- Equivalence classes: $[0] = \{0, 3, 4\}, [1] = \{1\}, \text{ and } [2] = \{2\}.$

Example: Partition

Problem

• Suppose R is a partition relation on A such that $\forall x,y\in A,\ x\ R\ y\Leftrightarrow x,y\in A_i$ for some subset $A_i.$ Is R an equivalence relation?

Solution

- Reflexive. $\forall m \in A, (m, m) \in R$.
- Symmetric. $\forall m, n \in A$, if $(m, n) \in R$, then $(n, m) \in R$.
- Transitive.

 $\forall m,n,p\in A, \text{ if } (m,n)\in R \text{ and } (n,p)\in R, \text{ then } (m,p)\in R.$ So, R is an equivalence relation.

Example: Least element

Problem

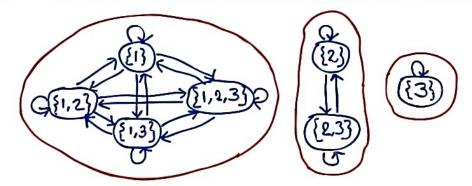
• Let X denote the power set of $\{1,2,3\}$. Suppose R is a relation on X such that $\forall A,B\in X$ A R $B\Leftrightarrow$ Least element of A is same as that of B. Is R an equivalence relation?

Example: Least element

Problem

• Let X denote the power set of $\{1,2,3\}$. Suppose R is a relation on X such that $\forall A,B\in X$ $A\ R\ B\Leftrightarrow \text{Least element of }A$ is same as that of B. Is R an equivalence relation?

Solution



- ullet R is reflexive, symmetric, and transitive.
- ullet So, R is an equivalence relation.
- Equivalence classes: [{1}], [{2}], and [{3}].

Example: Congruence modulo 3

Problem

• Suppose R is a relation on $\mathbb Z$ such that $m \ R \ n \Leftrightarrow 3 \mid (m-n)$. Is R an equivalence relation?

Solution

- Reflexive. $\forall m \in A, 3 \mid (m-m)$.
- Symmetric. $\forall m, n \in A$, if $3 \mid (m-n)$, then $3 \mid (n-m)$.
- Transitive.

 $\forall m,n,p\in A\text{, if }3\mid (m-n)\text{ and }3\mid (n-p)\text{, then }3\mid (m-p).$

So, ${\cal R}$ is an equivalence relation.

Example: Congruence modulo 3

Solution

· Equivalence classes.

Three distinct equivalence classes are [0], [1], and [2].

$$[0] = \{a \in \mathbb{Z} \mid a \equiv 0 \pmod{3}\} = \{0, \pm 3, \pm 6, \pm 9, \ldots\}$$

$$[1] = \{a \in \mathbb{Z} \mid a \equiv 1 \pmod{3}\} = \{1, 1 \pm 3, 1 \pm 6, 1 \pm 9, \ldots\}$$

$$[2] = \{a \in \mathbb{Z} \mid a \equiv 2 \pmod{3}\} = \{2, 2 \pm 3, 2 \pm 6, 2 \pm 9, \ldots\}$$

Intuition.

- [0] =Set of integers when divided by 3 leave a remainder of 0.
- [1] = Set of integers when divided by 3 leave a remainder of 1.
- [2] = Set of integers when divided by 3 leave a remainder of 2.

Congruence modulo n

Definition

Let a and b be integers and n be a positive integer.

The following statements are equivalent:

ullet a and b leave the same remainder when divided by n.

$$a \bmod n = b \bmod n$$
.

- \bullet $n \mid (a-b)$.
- \overline{a} is congruent to b modulo n.

$$a \equiv b \pmod{n}$$

• a = b + kn for some integer k.

Examples

- $12 \equiv 7 \pmod{5}$
- $6 \equiv -6 \pmod{4}$
- $3 \equiv 3 \pmod{7}$

Example: Congruence modulo *n*

Problem

• Suppose R is a relation on \mathbb{Z} such that $a R b \Leftrightarrow a \equiv b \pmod{n}$. Is R an equivalence relation?

Solution

- Reflexive. $\forall a \in \mathbb{Z}, a \equiv a \pmod{n}$.
- Symmetric. $\forall a, b \in \mathbb{Z}$, if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.
- ullet Transitive. $\forall a,b,c\in\mathbb{Z}$, if $a\equiv b\pmod n$ and $b\equiv c\pmod n$, then

So, R is an equivalence relation.

 $a \equiv c \pmod{n}$.

Equivalence classes: $[0], [1], \ldots, [n-1]$.

Example: Congruence modulo *n*

Solution

- R is Reflexive. Show that $\forall a \in \mathbb{Z}, n \mid (a-a)$. We know that a-a=0 and $n \mid 0$. Hence, $n \mid (a-a)$.
- R is Symmetric. Show that $\forall a,b\in\mathbb{Z}$, if $a\equiv b\pmod n$, then $b\equiv a\pmod n$. We see that $a\equiv b\pmod n$ means $n\mid (a-b)$.

Let (a - b) = nk, for some integer k.

$$\implies -(a-b) = -nk$$
 (multiply both sides by -1)

$$\implies (b-a) = n(-k)$$
 (simplify)

$$\implies n \mid (b-a)$$
 (-k is an integer; use defn. of divisibility) In other words, $b \equiv a \pmod{n}$.

Example: Congruence modulo *n*

Solution

• R is transitive. Show that $\forall a, b, c \in \mathbb{Z}$, if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

We see that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ imply that $n \mid (a-b)$ and $n \mid (b-c)$, respectively.

Let (a-b)=nk and $(b-c)=n\ell$, for some integers k and ℓ . Adding the two equations, we get

 $(a-c)=(k+\ell)n$, where $k+\ell$ is an integer because addition is closed on integers.

By definition of divisibility, $n \mid (a - c)$ or $a \equiv c \pmod{n}$.

Modular arithmetic

Modular arithmetic

Let a, b, c, d, n be integers with n > 1.

Suppose $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$. Then

- 1. $(a+b) \equiv (c+d) \pmod{n}$
- 2. $(a-b) \equiv (c-d) \pmod{n}$
- 3. $(ab) \equiv (cd) \pmod{n}$
- 4. $(a^m) \equiv (c^m) \pmod{n}$ for all positive integers m

Units digit

Problem

• What is the units digit of 1483^{8650} ?

- \bullet Units digit of 1483^{8650} is the units digit of 3^{8650} .
- Units digit of $3^0, 3^1, 3^2, 3^3$, and 3^4 are 1, 3, 9, 7, and 1, respectively.
- Periodicity is 4. Therefore,
- Units digit of 3^{4k+0} is 1.

Units digit

Problem

• What is the units digit of 1483^{8650} ?

Solution

- Units digit of 1483^{8650} is the units digit of 3^{8650} .
- Units digit of 3^0 , 3^1 , 3^2 , 3^3 , and 3^4 are 1, 3, 9, 7, and 1, respectively.
- Periodicity is 4. Therefore,
- Units digit of 3^{4k+0} is 1.

Units digit of 3^{4k+1} is 3.

Units digit of 3^{4k+2} is 9.

Units digit of 3^{4k+3} is 7.

- Units digit of $3^{8650} = 3^{4 \times 2162 + 2}$ is 9.
- Hence, the answer is 9.

Equation solving

Problem

• Use modular arithmetic to solve the equations.

$$16x + 12y = 32$$
 and $40x - 9y = 7$.

Solution

• Apply mod 3 on both sides of the first equation.

$$(16x + 12y) \bmod 3 \equiv 32 \bmod 3$$

$$\implies x \equiv 2 \mod 3$$

Similarly, apply $\mod 3$ on both sides of the second equation.

$$(40x - 9y) \bmod 3 \equiv 7 \bmod 3$$

$$\implies x \equiv 1 \mod 3$$

These two congruences are contradictory.

Hence, the system of equations does not have a solution.

Universal product code (UPC)

- Check digits are used to reduce errors universal product codes, tracking operations for shipping operations, book identification numbers (ISBNs), vehicle numbers, ID for the healthcare industry, etc.
- UPC is a 12-digit number, where the last digit is the check digit.
- Suppose the first 11 digits of the UPC are $a_1a_2a_3a_4a_5a_6a_7a_8a_9a_{10}a_{11}$. Then the check digit can be computed using the following formula

$$a_{12} = (210 - k) \mod 10$$
, where $k = 3(a_1 + a_3 + \dots + a_{11}) + (a_2 + a_4 + \dots + a_{10})$

Universal product code (UPC)

Problem

• The first eleven digits of the UPC for a package of ink cartridges are 88442334010. What is the check digit?

Solution

• k = 3(8+4+2+3+0+0) + (8+4+3+4+1) = 71check digit = $(210-71) \mod 10 = 9$ • Use modular arithmetic to solve the equations. 16x + 12y = 32 and 40x - 9y = 7.

Solution

ullet Apply $\mod 3$ on both sides of the first equation.

$$(16x + 12y) \bmod 3 \equiv 32 \bmod 3$$

$$\implies x \equiv 2 \bmod 3$$

Similarly, apply $\bmod\ 3$ on both sides of the second equation.

$$(40x - 9y) \bmod 3 \equiv 7 \bmod 3$$

$$\implies x \equiv 1 \mod 3$$

• These two congruences are contradictory.

Hence, the system of equations does not have a solution.

Universal product code (UPC)

- Check digits are used to reduce errors universal product codes, tracking operations for shipping operations, book identification numbers (ISBNs), vehicle numbers, ID for the healthcare industry, etc.
- UPC is a 12-digit number, where the last digit is the check digit.
- Suppose the first 11 digits of the UPC are $a_1a_2a_3a_4a_5a_6a_7a_8a_9a_{10}a_{11}$. Then the check digit can be computed using the following formula

$$a_{12} = (210 - k) \mod 10$$
, where

$$k = 3(a_1 + a_3 + \dots + a_{11}) + (a_2 + a_4 + \dots + a_{10})$$

Universal product code (UPC)

Problem

• The first eleven digits of the UPC for a package of ink cartridges are 88442334010. What is the check digit?

Solution

• k = 3(8+4+2+3+0+0) + (8+4+3+4+1) = 71check digit = $(210-71) \mod 10 = 9$