'Formulation of a Linear Programming
' Problem

m What is Linear Programming

Linear programming is a mathematical procedure for determining the optimum (maxi-
'mum or minimum) value of a linear multivariable function (called objective function) subject
to some constraints (linear equations and/or inequations). The non-negativity condition of
variables (i.e., feasibility) is also a constraint.
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B Food X contains 6 units of vitamin A and 7 units of vitamin B per gram |
and costs 12 paise per gram. Food Y contains 8 units of vitamin A and

12 units of vitamin B per gram and costs 20 paise per gram. The daily
requirements of vitamins A and B are at least 100 units and 120 units re.

spectively. Formulate this problem as a LPP defining variables suitably,
[CP 2016, 2019]

Solution Here the key decision to be made is to purchase the quantity of two food products
X and Y to minimize the cost, while satisfying the given requirements of vitamins.

Here the variables are
x; = Amount of food X in gms to be purchased.

x9 = Amount of food Y in gms to be purchased
Since it is not possible to purchase negative quantity of food, so x; > 0, x5 > 0.

The amount of vitamin A present in two type of food is 6x; + 8xy and that of vitamin B is
7Tx; + 12x5. Now the minimum requirements of vitamin A and B are 100 units and 120 units

respectively. So 6x; + 8xy 2 100; 7x; + 12x, > 120.
In this problem the objective is to minimize the cost of purchasing the two types of food,

which is given by Mipimize (Total cost) z = 12x; + 20x,,.
Hence the given problem can be expressed in ﬁnear Programming format as follows :
Minimize z = 12x; + 20x,
Subject to 6x; + 8x5 > 100
Ty + 12x9 2 120
%12 0,29 20,



n Three different types of lorries A, B and C have been used to trans'
80 tons solid and 45 tons liquid substances. Each A type lorry can carry
tons solid and 5 tons liquid. Each B type lorry can carry 8 tons solid ¢
3 tons liquid and each C type lorry can carry 5 ton solid and 6 tons liq
The costs of transport are % 600, T 500 and T 400 per lorry of A, B and
type respectively. Formulate the above problem as a linear programmin
problem to minimize the transportation cost.

Solution Here the key decision to be made is to determine the number of three type lo

to be used to minimize the total transportation cost to transport given amount of solid an
liquid substances. |

Here the variables are identified as :
x, = The number of A type lorries, which are used to transport the materials.
x9 = The number of B type lorries, which are used to transport the materials

and x3 = The number of C type lorries, which are used to transport the materials.
The number of lorries cannot be negative.

Sox;>0,x92>0and x3>0 .
The quantity of solid substances in tons transported by the lorries is 9x; + 8xg + 5x3.
The quantity of liquid substances in tons, transported by the lorries is 5x
By the given conditions 9x; + 8%, + 5x5 > 80 and 5xy + 3x9 + 6x5 > 45.
In this problem the objective is to minimize the transportation cost,
Minimize (Total cost) z = 600x; + 900x, + 400x4
Thus the required linear programming is
Min. z = 600x; + 500x5 + 400x4
Subject to 9x; + 8x5 + 5x3 > 80

9xy + 3xg + 6x3 > 45

X1, X9, X320

1+3x2+6x3

which is given by ;



XL Basic Solution

We consider a system of m simultaneous linear equations. in n un
AX = b; X € E*, where Aisam xn matrix of rank m(m < n). Let B be any m x m non-.
singular submatrix of A. Then a solution obtained by setting (n — m) variables not associated
with the columns of B, equal to zero, and solving the resulting system, is called a Basic solu-
tion to the given system of equatiéns.
The m variables, which may be different from zero, are called Basic Variables. The m x m
non-zingular submatrix B is called Basis Matrix and the columns of B as Basis vectors. ~

knowns




: m Feasible and Basic Feasible Solution

. B Feasible solution

A solution of a linear programming problem which satisfies the constraints and non-
negativity conditions is called feasible solution (F.S.).

® Basic feasible solution

In linear programming problem a solution, which is feasible and as well as basic, is called
a basic feasible solution (B.F.S.).




Convex Combination and Convex Sets

; Convex combination

; The convex comblnatlon of the finite set of points Xy, Xy, ..., X,,, in E” is a point X glven
by X = AXy + AXg + ... + 1, X where A;’s are non-negative real numbers for i = 1,2, ..,

Sh=Ai+Ag+ . A, =1
E =1

The convex combination of two points is nothing but the line segment joining two points.

P8 Convex Set [CP 2011, “13, 15, 18]

A set of points X is said to be a convex set if the line segment Joining any two distinct
points of X i is also in X. In ofherwards if the convex combination of any two points of X is in
X, then the set X is called a convex set.

[ ” i

Fig. 2.1

.~ Infig 2.1, the sets A and B are convex set and C and D are not convex sets.
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5 Show that %1 = 3, x5 = 5, x5 = 0 is a basic
solution of the system :
2x1 + Xg + 4x3 =11
3‘”1 + X9 + ix3 =14 [CP 2015' 2018]
T TT—

Solution Clearly x, = 3, x, = 5, x5 = 0 satisfy both the equations and hene (3, 5, ) is 4
solution of this system.
The system of equations can be written in matrix form as

2 1 4\ M| m
31 5)|%|7|14
X3
] .. 1 4
The rank of the coefficient matrix is 2 [ ‘1 5’=1¢0:'

So the system has basic solution. Now x; = 3, x5 = 5, x3 = 0 will be a basic solution if the
square sub-matrix corresponding to x; and x, is non-singular.
21
3 1
So the x; = 3, x93 = 5, x3 = 0 is a basic solution of the given system.

Now

‘:2—3:—1#&0.

mf Find a basic solution of the set of equations
2%, +3x,+x3=8
x1+2x2+2x3=5 [@2017]

Solution The given system of equations can be written in matrix form

SN

Here the rank of the coefficient matrix is 2

12 3
12
So the above system of equations may have at most 302 i.e., 3 basic solutions.
.. |12 3
N2
Putting x3 = 0 in the system of equations, we get

2.“Cl + 3&72 =8

X1 + 2%'2 =5

oot a0 ()6 370302 30 - ()

=4-3=1% 0} , which is equal to the number of equations.

# 0, so we can get a basic solution corresponding to x3 = 0.

. %1 = 1, 29 = 2, x3 = 0 is a basic solution of the given system of equations.




[CP 2014, 2016]

tion The given syste i :
Solution g1 ystem of equations can be written in matrix form as

v Y

Here the rank of the coefficient matrix .is 2

2 3

[ |4 ol = 4 — 12 = — 8 # 0], which is equal to the number of equations.

So the given system of equations may have 3C, i.e. 3 basic solutions.

3#0 80 we can get a basi luta di
4 2 L ge asic solution corresponding to z = 0.

Putting z = 0 in the system, we get,
2x +3y =5
4x + 2y =6

SO
-2 YE)

- 12 3)5)-3(50) = 6)

“x=1y=1,2 =0 is a basic solution and it is feasible.

Since

Again, ‘3 ‘fl =12 + 10 = 22 # 0, so we can get a basic solution corresponding to x = 0.

2
Putting x = 0 in the system, we get
y-5z=5
2y+42=6

w2 7)2)-(6)

\(25
m: 3 -5 5) _ _.1_( g 5)[5] = 71—(_2100++3108){141]
\2)\2 4) (6) 7 22(-2 38 22 i1

tx=0,y= 25 ,- 4 jsabasic solution and it is feasible.

11 11
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- —5| =8 + 20 = 28 # 0, so we can get a basic solution corresponding to y = 0.

Again,

Putting y = 0 in the system, we get,
2x—-5z2=5
4x + 42 =6

o 2 1))
o (2)-(2 57 (E) = 4 90E)- () )

z

& y=0,z=— —j— is a basic solution and it is not feasible.

s X = -iz 3 {
’ . 5 . 25 4 3
So the given system of equations has three basic solutions (1, 1, 0), (0, eI

(%, 0, _-3—] nd first two are basic feasible solutions.



}”’ Show that in E?, the set X = {(x, y) : y2 2 4x} is not a convex set. |
[CP 2014, 2014]

Solution The set X is nothing but the set of all points ¥

in the xy-plane, which lies outside the parabola y% = 4x.

The shadded region, shown in the figure is the set
X.

If we take two points X; and X, in the region as o ? e
shown in the figure. The line segment joining X, and
X, does not lie wholly within the region. So X is not a l

convex set.




Ws Prove that in E2, the set X = {(x, y) | x + 2y < 5} is a convex set.
[CP 2008, 2012]

Solution Let X; = (x4, y;) and X, = (x,, yo) be any two points of X.
L% +2y;<5andxg + 2y5<5
Let (x5, y3) = X3 = AX; + (1 — D)X, [wWhere 0 < A < 1]
= MUy, y1) + (1 = Axg, y9) = (Axg + (1 = A)xg, Ayg + (1 A)ys)

Lxg=Axg + (1 — A)xg

y3=Ay; + (1 - Ay |
Now, x5 + 2y5 = {Ax; + (1 — Axg} + 2{Ay; + (1 — Ay}

= Mx; + 2y1) + (1 = V)xg + 2y5)
SA5+(1-A)5 [ %y +2y1<band xp + 2y < 5]
=bA+5-5A=5

S X3+ 2y3<5
Which implies X3 € X
i, the convex combination of any two points of X is also a point of X.

Hence X is a convex set.

[



"f Draw the feasible region of the following inequations,

2¢v + 3y <6
x-y<1 4
%y20 [CP 2013, 2018] -
Solution We first convert all the inequations to equations and draw their corresponding »
graphs. Api |
2x+3y=6 |
or, 3+3 .. (1) s |
£-y=1 g |
x Yy 2 B 1
or, T+:T =1 - (2) 3
x=0 (3 1 C 1
e X - = - L X 1
y=0 o (4) -2 -1 0] 1A 2 3Ny 5

Now considering the inequations, we
draw the feasible region (shaded region)
OACBO, which is bounded,

(W



E;! Solve graphically :
Minimize z = 300x, + 400x,
Subject to 6x; + 10x, > 60

4x) + 4x9 > 32
X1, X220

Solution We first convert all the inequations to equations and draw their correspon‘
graphs. ‘

= e .
6x, + 10x9 = 60 or, 0 + = 1 aas 1)
4x; + 4x, = 32 or, %u-’;l =1 . (2)
X = 0 s (3)
Xg = 0 .. (4)

Now considering the inequations we draw the feasible space (shaded region), which
unbounded. :
Let 300x; + 400x; = 1200 (say)

n.*2 _1 ... (B)
or, 4+3

\\

10 1
N
8
<]

5
4
3T, B
2
1
X< “'_"_‘*—-*‘44 A
Ol 1 2 3 45 6 7 N’l\/’ Lxl
4'X'2 (2) (1)

= Zl?:vv:a;hirfr SP; of ec.lu.ation (5) by dotted line. Now we move the dotted line parall elt
e origin. The first point of the feasible space will be the point of



- ————————————————— - = R L —
minimization. Here B is the point of minimization. We get the COOI‘dlnateS of B by solving

(1) and (2) which are (5, 3) and z,,;, = 300 x 5 + 400 x 3 = 1500 + 1200 = 2700.




" Solve graphically :
Maximize z = 3x; + 2x,
Subject to x; - x,< 2

X, +x926

X, %320 |

Solution We first convert all the inequations to equations and draw their corresponding -

graphs :

xl—-x2=20r, fl-4—32-"—'1 (1)
2

x1+x2=6 0:!',-x--l-—+-'—":"i = ] (2)
6 6

X1 = 0 (3)

X9 =0 . (4)
Now considering the inequations, we draw the feasible region (shaded region) which is '

unbounded. ]

Let 3x; + 2x, = 18 (say)

or, 2112 - .. (5)

6 9

We draw the graph of equation (5) by dotted line. Since the problem is of maximization
type, we have to move the line indefinitely away from the origin but no finite maximum value 1

of z can be achieved within the feasible region.
Thus the given linear programming problem has unbounded solution.



A

X

[ Note _

In this case the feasible region is unbounded and the problem has unbounded solution.

“* Solve graphically : -
Maximize z = 4x; + 2x3
Subject to 2x; + x5 <1

3x, + 4x3 26
x1, %220

m We first convert all the inequations to equations and draw their corresponding
graphs.

2x1+x2=10r, Ell—-i-ilz— =1 )
3x1+4x2=60r £21.-+-'%2— =1 ...(2)
x1=0 § .o (3)
Xo =0 ... (4)



Now considering the inequations, we have tried to draw the feasible space but failed. 2
consequently no feasible solution is possible. ‘

Hence the given linear programming problem has no feasible solution.

p Xo
-

DL

(6D

In this case there exist no feasible region and so the problem has no feasible solution.
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H,. Show that (0, 2, 3, 4) is a basic feasible solution of the set of equations
Tx, + X + 3xg + 3x, = 23

7x1+2‘x:2+4x3+ x4=20
14x1+3x2+2x3+9x4=48
whose feasible solution is (1, 1, 2, 3).

solution Here the number of variables is four but the number of equations is three. So a
b;;c—s—(:la:ion of this system has at most three non-zero variables.

Now we rewrite the system of equations as
)X + QgXg + QgXg + Agx, = b

ze K1)
7 1 3 3 23

wherea; = | 7 |,as = |9 |,ag = 4,a4=|1,and b= |20
14 3 2 9 48

Since (1, 1, 2, 3) is a feasible solution of the given system of equations, so from (1), we get
a1+a2+2¢13+3a4=b

(2)

Now the vectors a,, ay, as, a4 are clearly linearly dependent set of vectors (since at most
three vectors can be linearly independent in E3).

Let )L]_al + 2,202 + ).3(13 + 14(14 =0

... (3)
where at least one A; (i = 1, 2, 3, 4) is non-zero. Equation (3) gives
7 1 3 3 0
117 +a,22 +2.34 +A‘41=0
14 3 2 9) \0
which gives,
TA 1+ A9+ 323 +344=0 ... (4)
TA L+ 245+ 423+ Ay =0 ... (B)
142,1 + 312 + 22,3 + 93,4 =0

B)-4) = Ay +23-24,=0

... (6)
- (D
(6)—2x(4)=>12—4/13+314=0 .. (8)
Solving (7) and (8), we get
S
3-8 2-3 4-1
or, %:%:1{ = k (say)
, -"12‘-‘-13=l4=k
i Fl‘om(4)weget,7&1=—12—313_37"4=de3k—3k=_7k
A S A=k
We take k = — 1 [+ we have to show (0, 2, 3, 4) is a basic feasible solution]
Sody=1,2,=23=2,=-1
] Then (8) becomes
3 a-az-azg—ay=0 - (9)

|



To reduce the number of positive variables of the given solution, we use ks followiog
criterion to determine the vectors to be eliminated for 4; > 0

ffLaMin -x“:’- A; >0} = Min {fj—}=-l— =1

A, Jo\A Al 1

where x/ is the value of x; in the given feasible solution.
Now we have to eliminate a,. From (9) @, = ag + a3 + a,

From (2) 0.a, + 2ay + 3ag + 4a, = b

... (10)
Comparing (1) and (10), we get (0, 2, 3, 4) is a basic feasible solution of the system.
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% . implex method.
B Solve the following linear programming by simp
Maximize z = - x, + 3xy - 2x4
Subject to 3x; -~ xp+ 2x53<7

- 2%, + 4x, <12
- 10

4x; + 3x22(;f 83 < [CP 2009, 2011, 2014 21y
X1y X9y X3 T~

Solution Introducing slack variables X4, X5, Xg We rewrite the problem as
Max 2 = — %, + 8x, — 2, + 0.x4 + O-x5 + O-xg

Subject to 3x; — Xo + 203 + x4 =17
== le + 4x2 + X5 = 12
-—4x1+3x2+8x3 +x6=10

%20,i=1,2 3 4,5, 6
The initial basic feasible solu

tion is [0, 0, 0, 7, 12, 10] and pass on to the first simple
tableau as follows :

Tableau-1
¢ -1 3 -2 0 0 0 Mini ratio
FCB B X b al a2 as a4 a5 ae
0 a, X4 3 -1 2 1 0 0 —
0 as X5 12 ~2 0 0 1 0
@ 142- =3-
0 ag Xg 10 —4 3 8 0 0 1 10
z=0 zj~c; 1 3 | o | 0\\0‘7 3
\\TN\N\




g R bt ; 8
~ Here ay is the entering and a; is the departing vector. Now we pass to second tableau.

Tableau-2
¢ | -1 ! 3 2 0 0 0 Mini ratio
B X ‘ b 1 %1 G2 | 93 a, as ag
! I 1 x +
ag | x4 | 10 | N\ ! 0 | 2 1 1 0
&) | | i LU
| | 2
ey | x| 3 | _1 | 1 0 o 1 0 _
| ; , | T2 4
ey | x ! 1 | _s 0 l 8 0 | 3 1
J: i l 2 i | 4
z=9 Ti ZJ = CJ ; _ 1 0 2 0 3 0
| | 2 ‘ 4
T l
Here a, is the entering vector and a4 is the departing vector. So we pass to third tableau.

Tableau-3
| ¢ -1 3 -2 0 0 0
1 CB l B X b ay az as ay as aB
| -1 a, x 4 1 0 4 2 1 0
5 5 10
| 3 X 5 0 1 2 1 3 0
’ , 5 5 10
I
0 xg 11 0 0 10 1 1 1
‘ 2
B i
§ z=11 zj—cj 0 l1 0 % % % 0
| ]

Here all z; — ¢; > 0, s0 the optimal stage is reached and zp, = (-1) x4 +3 x5 =11
atx;=4,x2=5,x3=0

- [In the solution, only given variables are to be mentioned]
[ —
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Solve the following linear programing by simplex method
Maximize z = 2% + xg

Subject to xy +x9 - 2x3 <7
- 3x1 + X9 + 2x3 <3
X1y X9y Xg 20

T

solution Introducing slack variables x, and X5,
/l\’d;—x;;ize 2= O‘xl + 2x2 + X3 + O.x4 + 0.x5
Subject t0 X1 + X9 — 2x3 + x4 =1
—3xy + X9 + 2x4 +x5=3
xiZO,i= 1,2,3,4,5
The initial basic feasible solution is [0, 0, 0, 7 , 3] and we pass to tableau-1.

we rewrite the problem as

Tableau-1
C; 0 2 1 0 0 Mini ratio |
Cg B X b a, a, ag a, ag
0 a, X4 7 1 1 -2 1 0 4
0 Qag X5 3 -3 @ 2 0 1 3—
L z=0 Zy—C; 0 —2 -1 0 0
T \)
Here a, is the entering vector and aj is the departing vector and we pass to tableau-2
Tableau-2
c 0 2 1| o | o
J
Cg B X b a, as as a, as
0 a. %4 4 4 0 -4 1 -1
2 as X9 l 3 -3 1 2 0 1
Here only z, —¢; = — 6 < 0, So @, is the entering vector. But all y;; < 0 ie., vy, v, are

Uegative, Hence the problem has no finite optimum value of the objective function. Hence the
Problem hag unbounded solution.

m~ Solve the following linear programming problem
MaXimize Z2=x; + 3x2 + 2x3

Subject to x, + 2x, <10
2x, +x3S8
2xy + Xg <6

and x,, Xz, X3 2 0 ([CP 2017)
—_— . A
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Solution Introducing slack variables x, x5, xg, We rewrite the problem as
Maximize 2 = x; + 3xq + 2vg + 0-x, + 0-x5 + 0-xg

Subject to x; + 2%, + X4 =10
2x1 + Xg + X5 =8

£29,i=12,..,6
The initial basic feasible solution is [0, 0, 0, 10, 8, 6] and we pass to tableau-1.

Tableau-1
o | 1| 8] 2] o[ o[ o | Minirato
‘ CB B X b a ag ag ay Qg , Qg N
0 ay | x4 10 1 2 0 1 0 0 b
as X5 0 1 0 1 0 e
0 ag Xg 6 0 @ 1 0 0 1 3
z=0 2—8; -1 -3 -2 0 0 0
T d
a, is the entering vector and ag is the departing vector and we pass to tableau-2
Tableau-2 |
¢j 1 3 2 0 0 0 Mini ratio ;
Cs | B X 5 ol a | ag | @ ag ag |
0 ay X4 4 @ 0 -1 1 0 -1 4 —
0 ag | x5 8 2 0 1 0 |4
a; Xg 3 0 1 0 1 | =
2 2
z=9 2;=¢; -1 0 3 0 0 3
2 2
T l
a, is the entering vector and a4 is the departing vector and we pass to tableau-3.
Tableau-3
) 1 8 2 0 0 0 Mini ratio
= CB B X b a; aqg ag ay ag ag
1 a Xy 4 1 0 -1 1 0 -1 S
0 ag Xg 0 0 0 @ -2 1 9 0 —
3 as X9 3 0 1 1 0 0 1 8
2 2
z=13 zj—¢; 0 0 3 1 0
-2




Here ag is the entering vector and aj is the departing vector and we pass to tableau-4.

Tableau-4
¢ 1 3 2 0 0 0 Mini ratio

CB B X b a; Qg ag a, Qag Qg

1 a, X, 4 1 0 0 b | 1 1 12
3 3 3

2 as X3 0 0 0 1 _2 1 2 —_
3 3 3

3 az x2 3 0 1 0 _l 1 9
Ol EE;
=13 z;—C; 0 0 0 1 3
z g G 1 3
l T

Here all z; — ¢; 2 0, so the optimal stage is reached and the optimal solution
x2=3,x3=Oandzw=1x4+3.x3+2><0=13
But z, - ¢4 = 0 for non-basic variable x4 and y,4 and y34 are positive. Thig implies that the

given problem has infinite number of solutions.
[ oy —
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B Use Penalty method to solve the following linear programming Problep, ,
Maximize z = 5a; + 11lx,

Subject to 2x; + x,<4
3x; + 4x5 2 24
2x; - 3x5, 26
X1, X920

——

Solution Introducing slack variable x3, surplus variables x4, x5 and artificial variables
x7, we rewrite the problem as.

Maximize z = 5x1 + 1]x2 + 0-x3 + 0-x4 + 0-x5 — st — Mx7

Subject to 2x1 + X9 + X3 =4
3x1 + 4x2 — X4 + Xg =24
2x1—3x2 — X5 +x7=6

%20,i=1,2,..,7
Where M is a very large positive number.

Here [0, 0, 4, 0, 0, 24, 6] is the initial basic feasible solution. We pass to tableau-1.

Tableau-1
cj 5 11 0 0 0 -M | —-M | Mini ratio
Cg B X a; a, ag a, as ag a;

0 | @ | %) 4 @ Ll1tl ol o | ofo 2
-M ag Xg 24 3 4 -1 0 1 0 8
M| a1 [ =] 6 2 S0 0 a| o 1 3

z = -30M zi—c; | -5M-5 -;l\i[i &T M 0 5
T 1

E |5
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Tableau-2
¢ | 5 | n 0 0 o | -M| M
( CB B x b al ' aa 03 04 a5 ae a7
5 a, | x 2 | 1 | 1 0 0 0| o
‘ 2 2
-M ag | 14 8 0 5 3 -1 0 1 0
2 2
-M | a; | % 2 0 -4 -1 0 -1 0| 1
4 f e —
g 2 2

Here all (z; - ¢;) 2 0, but there are two vectors corresponding to the artificial variables lie
- in the basis and values of the artificial variables are positive, so the given linear programing
- problem does not possess any feasible solution i.e., the problem has no feasible solution.

. Py - e



Primal Problem : Dual Problem :
Maximize z = CX Minimize w = TV
Subject to AX < b Subject to ATV > CT
X>0 V=0
Where A = @)mxnt=1,2,..,m;j=1,2,...,n
C = (cq, Cg, ..., €), b = [by, by, ..., b,,], X = [x1, x9, ..., x,]

V = [vy,vg, ..., Uyl and AT, bT and CT are the corresponding transpose matrices.




. AN
The four possible cases in primal dual problem as follows :

‘Feasible solution ~ Feasible solution Finite optimal values of both exist.
Feasible solution No Feasible solution The Primal has unbounded solution
No Feasible solution Feasible solution Unbounded solution of the dual

No Feasible solution =~ No Feasible solution No optimal solution of the either problem




u Use duality to find the optimal solution (if any) of the following Linear |
Programming Problem :

Minimize z = 15x; + 10x,
Subject to 3x; + 5x, > 5

5x1+2x223

X1s x22 0

Solution Given problem is a standard minimization problem. We take vy, vy as dual
variables. The dual of the given problem is
Max w = 5v; + 3v,

Subject to 3v; + 5v,< 15
S5vq + 2v9 <10
vy, Vg 20
Now we will solve the problem by simplex method.
Introducing slack variables v, v, we rewrite the problem as

Ma.X w = 5U1 + 3U2 + O'U3 + 0'U4
=15

Subject to 3v; + 5vg + vg

5v1 + 202

Uy, Ug, U3, Uy 20
The initial basic feasible solution is [0, 0, 15, 10] and we pass to tableau-1.

+U4=10

Tableau-1
¢ 5 3 T_O\
0 ag U3 15 3 5 1 T
z=0 zi—c -5 -5 FO\\O—
0 Iy ST

Mini ratio



Tableau-2
5 3 [ o | o
0 ag Ug 9 0 1 3 & »
G-
2 1 2
5 a, V1 2 1 5 0 B,
=10 Zj— ¢ 0 -1 o | 1
T i
Tableau-3
Cy 5 3 0 ¢
Cs B X b a a . &
3 az vy 45 & ' 5 -2
20 _2 2
5 aq Ui 15 1 0 19 19
235 Zj= S . 0 5 »
. 19 19
B 1
| . ) 235 20
Since zj—c; 20 for all j; so the optimal stage 1s reached and w,, = Ty at v, = T and
b 45
2 — —
19
By the duality theory, we get the optimal value of the objective function of the primal as
235 235 5 16

19 L.e., Zminz —16— atx1 = 1'9-,x2— 19 :
[We get the values of x, x from the net evaluation corresponding to the slack variables

- Y8 V4in the final table]
4



!{f Obtain the dual of the following linear programming problem and hence
solve it.
Maximize z = 3x; + 4x,
Subject to x; -x5<1
xX; +x324
x; -3x9<3
X1, %920

Solution We first rewrite the given problem in standard form as

Maximize z = 3x; + 4x9
Subject to x; —x9<1

-x; —Xx9 <-4

x;—3xy < 3
%Xy, %920
The dual of the above problem is
Min w = v{— 4vy + 3v3
Subject to v; — vy +vg23
—v;—vg—3vg 24

Al

vy, Ug, V320
F Where v, vg, vg are dual variables.
Now we maximize w* (= — w) under same constraints.
Intl‘Oducing surplus variables vy, Us and artificials variable vg, v7, Wwe rewrite the problem

as)
Max w* = Uy + 4[)2 - 3U3 + 0.04 + 0'1)5— MUG—' MU7
Sllb_]'ectt'oul—r_;2 + U3 — Uy + Vg =3
vy -vy—3v3 -—vUs Ftur=4

U; 20, i = 1, 2, veees 7

Where M is a very large real number.
Here 0,0, 0, 0, 0, 3, 4] is the initial basic feasible solution and we pass to tableau-1.




Tableau-1

¢; -1 4 -3 0 0 | -M | -M |

CB B X b al a2 a3 a4 a5 as a7

= M as UG 3 1 —1 1 —1 0 1

-M ay Uq 4 -1 -1 -3 0 -1 0 1
w*=-T™ 2j— ¢ 1 2M -4 | 2M + 3 M M 0 0

Here in the initial table all 2;~ ¢

dual problem has no feasible solutmn
Now there are two possibilities for the solutions of the primal problem :

(i) The primal has no feasible solution.
(ii) If the primal has feasible solution, then it has unbounded solution.

Now we use graphical method to find the feasible space (if any) for the primal problem.
AX,

X' -

Y

x1+x2=4

x1—3x2 =

7

Ve

X,

Here we get feasible space, so the primal problem has unbounded solution.

> 0, but the artificial variables are in the basis, so the

1 L ey D

L e i "




“4 Find an initial basic feasible solution of the following transpnrtatirmz

problem by North-West Corner method.

N W

D, D, DE___,_,_B_‘L_
I | - 12
0, é
9 g 5 T
0, “
4 6 8 | 7
16
0] |
3[ 5 8 9 5
8 18 13 3 [CP 2015, 201]
Solution
D, D, D D,
8] 4] 4
..}
0, A
9 8 __J 5 1
14] 0
0, | 14
4 6 8 7
0, 182
5 8 | 9 5
& 18 13 3
H

Here total supply = 12 + 14 + 16 = 42
Total demand = 8 + 18 + 13 + 3 = 42
So the problem is balanced.

Now we try to find an initial basic feasible solution of the given trans

rtation problem.
We get the solution " i
211 = 8,219 =4, x99 = 14, x93 = 0, 233 = 13, x,, = 3
and the corresponding cost = 72 + 32 + 84 + 0+ 117 + 15

= 320 units.

e



\/o 2@1{5 A,/bpmxfmn,ﬁba\/‘/[?ﬂwo/ (\//3 /‘//l)

B D

0, Z°, 30(0) [ 30(0)
o[ 5] 5 P2 1 | OIFD,
0 4 | ww/

20(2) 4

20(2) 4o(0) 300) ,J
W) 30(1) |
e 200 0

R




P 4' Obuain an optimal basic feasible solution to the folloy,
transportation problem :

W, W, W, W,

19 [ 30|50 | 10] 7

F, | 70 | 30 | 4 | 60 | o
N\

F 40 8 70 20 18
5 8 7 14

( Kalyani M. Sc., 1982; Vidyasagar Hons., 20021

We use VAM to find as usual the initial basic feasible solution, A
seen from the table we see that the initial allocations are

X, =5, x,= 2, xy=T, %= 2, X, =8, X, = 10,
whose numberis m+ n— 1= 6 and whose cost comes out as 779,

To test the optimality, we compute u; and v; and have the cel]
evaluations in circles of the unoccupied cells.

[ The numbers in circles are the cell gvaluations, that i,
= (4 +v).]

F‘ 30

W, Wi, ui

50 ]’Wo

7 2]

®
[

Fz@

4
19
70 J '60 50
A 2@ ]
\E 20 1°
Y 19 -2 - 10 10

=-18, a negative quantity. Hence this
optimal solutjon,

S,

This shows that A,
allocation does not give an

We allocate maximum quantit i
the cell (2, 4) empty. Rq "y (+2) to this cell (2, 2) and make

TRANSPORTATION PROBLEMS 34]

with these revised allocations, the new transportation table is
onstructed and - shown on the right below.
cont

, { ' [s] ] ‘ 12) |4
l L [l 300 so 0]

' | | 2 7] ‘ c

*2 ) 21 4 E 0. (30 40 [60
i | J | L i g |

a 1 | (6 112) 18
t—— | | (w0 [8 [ [20

8- 2 1042 gy

In the next iteration the same procedure is. followed. Wc‘ compute
u; and v, for the table and get all cell evaluations non-negative in the
unoccupied cells. The allocated cells or any sub-set of them do not
form a loop and hence the solution is basic.

The elements in circles are cell evaluations, that is, {c; — (4, + v)}
and they are all positive.

W, W, W, A u,
5 32 ) (2] |

F.Jmopoo (o] [0 0
2 I

F, @[70 J ol [0 [@]®
6 52 2] |

r O W—J (8] [ [20]10

v; 19 -2 8 10

Thus the unique optimal solution is

B = 5 =0 = 2 = s B 6 X= 12

and the optimal cost is

SX 19+ 2% 104+ 2x 30+ 7x 40+ 6x 8+ 12x 20= 743.



Ex. 6. Solve the following balanced transportation problem -

D,

FRANSFORTATION  FROBLEMDS 345

tableaux. According to the general rule, \A./e compute u, and v,. The
figures in circles in the unoccupied cells give (u, + v,) for that cell.
D D, D,

u

a;
0 8 7 60
0, 3 8 70
0s 11 3 80
b 50 80

[ Kalyani Hons., 1987 1

To find the initial basic solution, we use VA

i the M and see that the
initial solution is

.xl3= 607 xz] = 50, x23= 20, ‘x32: 80.

This solution shows that ¢
allocations is four which is
solution is degenerate.

he number of occupied cells, that is,
not equal to m+ n— | = S. Hence the

To resolve this degenerac
Y, we add a small posit; ity €to
a cell‘such that this does not result j i L o ]

- CELL EVALUATIONS
SO — D
0, 160 0 (
8| _[7] I3 1 N
E0 I (O P ] J,
0 BJ [8 o [9] . -5 | & |
7 80 -1 Bl
. 80 —4 [
< [11] IT H 18 . 1 6 ‘
e
50 80 80
vi =3 7 3 Ap=-5<0

The cell evaluations {c; -

(u;+ v)} are shown in the above table

on the right . Since, for the cell (2, 2), cell evaluation is negatiye, we
allocate maximum possible unit to (2, 2) cell and adjust this additional
allotment such that the cell (1, 2) becomes empty.

D, D, D "
g— € |60+ ¢ 0, 3[—8@1—7@17—60-6
S EN EE N P
+€ |20-¢
0 | D™ f® s} -3
L 50 80 80
vi 3 8 9

We compute u; and v; again for the new allocation and show in
circles (4;+ v,) of the unoccupied cells.

In the following table we show the cell evaluations {c;, —
for the unoccupied cells.

(ui + v/)}

CELL EVALUATIONS

11 5 .
13 | 1




All the cell evaluations being non-negative, we have th= optimal
solution. The occupied cells are basic cells.

Hence making € —0, we get the optimal solution as
x,;= 60, x, = 50, x,; = 20, x;, = 80.

The minimum cost is
60x3+50x3+20x9+80x3=750.



~ Find the optimal assignment for the assignment problem with the follow-

ing cost matrix :

W, W, w, W,
M, 1 4 6 3
M, 9 7 10 9
My | 4 5 , 11 7
M, 8 7 | 8 5

[CP 2014, 2017]

Solution Given assignment cost matrix is a square matrix. So the problem is balanced.
We first subtract least element of each row from all the elements of that row and we get

the reduced matrix as given below :

W, W, W; W,
0 3 5 2
2 0 3 2
0 1 7 3
3 2 3 0




T, S oo o .,

.
So we connect all the zeros by minimum number of horizontal and vertical lines. Here the

,umber of lines is four, which is less than the order of the matrix. So the optimal stage is not
oached. Now we select ‘3’ which is the least of all surviving (uncrossed) elements. We subtract
3 from all the surviving elements and add it to the elements lying in the junction (The point
,f intersection of the two crossed out lines). Then the reduced matrix is given below :

M| 5 @] 5 | 10 8
M @ ¢ [ 1] 2] s
M| 3 | 5 |3 | [0 s

We again connect all the zeros by minimum number of horizontal and vertical lines. Here
the number of lines is 5, which is equal to the order of the matrix. So the optimal stage is
reached and the optimal assignment is M; — Jg, My — J5, Mg — Jg, M—»Jd, M- d,,

<. The minimum machine hours is equal to (6 + 10 + 2 + 4 + 10) i.e., 32 hours.

ufn Find the optimal assignment for the assignment problem with the follow-
ing cost matrix :

Wl W2 W3 W4

M, 1 4 6 3
M, 9 | 7 10 9
M, 4 5 | 11 | 7
M, 8 7 | 8 5 J

[CP 2014, 2017)

Solution Given assignment cost matrix is a square matrix. So the problem is ced.
~\—W;—rst subtract least element of each row from all the elements of that row and we get
the reduced matrix as given below :




Now we subtract least element of each column from all the elements of that column and
we get the reduced matrix as below :

W, W, W; W,

Now we connect all the zeros by minimum number of horizontal and vertical lines. Here
the number of lines is 3, which is less than the order of the matrix. So the optimal stage is
not reached. Now we select ‘1’ which is the least of all surviving elements. We subtract ‘I’

from all the surviving elements and add it to the elements lying in the junction. Then the
reduced matrix is given below :

M4 "‘}4""'""2""""'6"' "@

We again connect all the zeros by minimum number of horizontal and vertical lines. Here
the number of lines is 4, which is equal to the order of the matrix. So, the optimal stage is
reached and the optimal assignment is M; — W, My —» W3, M5 —» Wy, M, > W,

and the optimal (minimum) cost is (1 + 10 + 5 + 5) i.e., 21 units.




a ?;;:f;ilr:tlzg " t?‘e cost !.natrix of assigning 4 clerks to 4 key punching
j € optimal assignment if clerk 1 cannot be assigned to job 1.

What is the total minimum cost?

Job
1 2 3 4
Clerk ! _— 5 2 0
2 | 4 7 5 6
3 5 8 | 4 3
4 3 6 6 2

Solution In this problem one assignment is not possible. Clark 1 cannot be assigned to the

' wb 1.

To solve this problem we put a very large cost, say 50 (the largest element of the matrix is
. % at the cell (1, 1) to get a new matrix given below and then we solve the problem as usual.

1 2 3 4
1, 50 | 5 | 2 0
2 4 7 | 5 6
3 5 8 | 4 | 3
s 3 6 | 6 | 2

Since the matrix is square, so the problem is balanced.

“,'
reduced matrix as below :

1 2 3 4
1[50 | 5 2 | 0
2 0 3 1|2
3. 2 5 1 0
4F1‘4 4 0

| I

Now we subtract least element of each column fro

. get the reduced matrix as below.

1 2 3 4
3 T 2 °
4 IERE 3 0

e subtract least element of each row from all the elements of that row and get the

m all the elements of that column and



Now we connect all the zeros by minimum number of horizontal and vertical lines. Here

the number of lines is 8, which is less than the order of the matrix. So the optimal stage is "'_

not reached. Now we select ‘1’ which is least of all the surviving elements. We subtract ‘1’ |

from all the surviving elements and add it to the elements lying in the junction. And the
reduced matrix is given below :

1 2 3 4 1 2 3 4
114911 |1 |[6]] 1|49 1|1 |[&]
31| 1([@|o| s|1|1[[@] e
¢ Lo tE-d-te] 4 [@hetale
Case-I Case-II

We again connect all the zeros by minimum number of horizontal and vertical lines. Here
the number of lines is ‘4’, which is equal to the order of the matrix. So the optimal stage
is reached. But in the process of connecting zeros, we see that we can do this in two ways
(as shown in the above tables). This situation arises, becuase at one stage of the process,
there are two zeros at 2nd and 4th rows and also there are two zeros at 1st and 2nd column. §
In such conditions alternative solutions exist but the optimal (minimum) cost is same for §
both solutions.

The optimal solutions are

1— 4,2 - 1,3 > 3,4 - 2 with minimum cost (0 + 4 + 4 + 6) i.e., 14 units.

and1—>4,2-2,3-3,4-1 with minimum cost (0 + 7 + 4 + 3) i.e., 14 units.

e . - e - o - a - .- o~ —— _ & ' A.‘\n



Find the minimum cost solution for the assignment problem whose cost
coefficients are given in the following table :

A B € D
1| 1| 1 1 | -3
el 2 | o | 5 | 4
5| 1 | 1 | 2 | 3
4| 2 3 | -1 | 2

Solution In the table, the most negative number is ‘-3’, so we add ‘3’ to all the elements
of the given table and get the reduced table as below :

ERERE
Eaes
( |

The table (matrix) is square, so the assignment problem is balanced

o | 00|

D
1 4 0
2 3 92
3 4 6
4 6 5




-— I |

/_/ bt t 1 t - T ——— ..
We first subtract least element of each row from all the elements of that row and get the
reduced table as below :

> (Jb] DN —

W | | w m”p
A~ |~ s
c|lo ||~ |O
w oo | oD

Now we subtract least element of each column from all the elements of that column and
get the reduced table as below :

oo}
2
e

[

g
o o] 4|

1
1 2 | [0]
1

B W N =

We connect all the zeros by minimum number of horizontal and vertical lines. Here the
number of lines is ‘', which is less than the order of the matrix. So the optimal stage is not
reached. We select ‘1’ which is the least of all the surviving elements. Now we subtract ‘1’
from all the surviving elements and add it to the elements lying in the junction. Then the

reduced matrix is given below :
A B C D A B C D

a5 0]

B

"V I

Becle
[ 1 | 0| 4]
0

— Case-11

ros by minimum number of horizontal and vertical lines. Here

We again connect all the ze ;
h is equal to the order of the matrix. So the optimal stage is

the number of lines is 4, whic
reached,
As in the previous example here we get two alternative optimal solutions.

15D 2 5B 3 5A4—C Cost =-3+0+1-1=-3units

and1>D. 258 3-C,4- A Cost=-3+0-2+2=-3 units.




Game Theory
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%/&(APH]CAL METHOD OF SOLUTION.
We illustrate this method by examples.
Consider the game problem whose B
payoff matrix is given below. The
I}l Bll . Blll BIV

game has no saddle peint. Suppose A {

chooses Ay and A;; with probabilities x Avl L3101 2
. A 7'

and (1 - x) respectively. If B chooses An | 301 -1

By along with this, then the expected
gam gofAis g= x+ 3(1—- x)= 3 - 2

If we draw a graph of this function showing g against x, we notice
that by choosing B, throughout, B can restrict A’s gain to lie on the line

g= 3- 2x

We compute similarly the other gains of A, when B uses By, By and
By and they are

g=3xg=1-x, g=3x- 1.

We draw two parallel axes one unit distance apart and mark a scale
on each. The two strategies A, and A n of A are represented by these two
straight lines.

OO = 1 unit is the initial line.

The gain lines L,, L,, L;, L, are then drawn to represent the gains
of A corresponding 10 By, By, By and B,y respectively of B by joining




1, 3, 0, 2 on the line representing Aj
with 3, 0, 1, (= 1) on the line
representing A.

Now in order to find out the point

M L, which will maximize the minimum
/ 0 expected gain of B, we bound the
— 1

figure so obtained from below by
drawing a thick line. The highest point

-2 - MAXIMIN — —2 M( maximum) of this bound refers to
~3 A ' _ _13 the maximum of the minimum gains.
A Ap At this point, as is obvious, B has used

his two courses of action and they are
B, and By as it is the point of intersection of L, and L,.

Therefore the 2 x 2 sub-matrix which B
provides the optimal solution of the given B B
game is shown on the right. Now solving as _ /”' A

A 02

usual this 2 x 2 sub-game, we get x= rand 4

1— x= 3 (also indicated by the abscissa of

Aui 1 | -1

the point M).

4
value of the game 1s 12 (as indicated by the ordinate of the point M).

The probabilities for By and By are computed as (% ! J The

Thus the optimal strategies are for A /% % |and for B (0, 0, % ) )
' J > 4

and v = %



Consider the game whose payoff matrix is given below along with
the graph.

B 7 7
B, B 6 o
5 5
A 0 -2 4 4
Az 7 -1 3 3
A A | -1 4 % 2
Ay | =2 6 1 1
As 51-3 0 0
-1 — 1
-2 L —2
-3 4 -3

3 B, sz

In this graph we have plotted the points of A’s pure strategies on the
corresponding strategies of B shown by two parallel lines. B, and B,

on the graph at unit distance OO apart. The B
lowest point M (minimax) of this figure, from

. - B] Bz
above of the thick bound, corresponds to the pair
of strategies A, and A, of A ; hence the 2X 2 A A | T -1
game which provides the optimal solution of the A =2 | 6

given game problem is shown on the side and can be solved easily.

It may sometimes so happen that we get two pairs of strategies
having the same value for the game giving two pairs of optimal
strategies.

Let us consider the game whose payoff matrix is given below.

B Graphical representation of the

Bi Bi Bu By gam? as' represented by the given

" s 2] 3 m-atnx- 1S given 1n the diagram
{ (given in the next page), the manner

An | | 2163 of computation being the same as in
the previous examples. From the graph, it is seen that the player B has
two pairs of supporting strategies, for example, (B, B,,) and
( By, Biy) giving the same value. 3 for the sub-games. The player A
infinite number of mixed optimal strategies ( x, 1 — x ), where x

A

has



GAME THEORY

varies from —§- to %. This can be found

either by solving the two 2x 2
sub-games or from the abscissae of
the points P and Q. It can be shown by
solving the two 2Xx 2 sub-games
formed by two different pairs of B’s

strategies that the optimal strategy for
B is his-pure strategy Byy .

Q= P W A LW &

It may so happen in some payoff

matrix that three gain lines meet at the
minimax or maximin point. In this
case to determine the optimal strategy

for the players, we solve the 2 x 2 sub-games co

45

rfesponding to the

gain lines having slopes with opposite sign. The reason for the same

will be explained with the graph of such problem.

Consider, for example, the game whose payoff is given by the

adjacent matrix. The graphical

B representation of the game is shown

B, Bx B; Bw in the diagram given below. It is seen

A l-1]3 71 2 that the .three gain lines of A

A An. 6 S [ 5 | 3 corresponding to B;, By and By pass

through the maximifi point M. The

value of the game is seen to be 2,

Ar

An

t7 Solving the 2 X 2 sub-game involving B

| ¢ and By of B, we get the optimal solution as :

: 3 1 1).

s for A, optimal strategy 1s (5, 5 )

for B, optimal strategy is (%, %, 0, O] and
the value of the game is 2.

4
-3
Ly The value of the game is 3 for the 2 x 2
[, sub-game with ( By, B, ) also.

But the. value of the sub-game ’with
O (B, By ) is 3 which is the saddle point of

{— 1the corresponding sub-matrix. Thus, by

choosing ( By, By,), B is sure to lose at most




3 while as shown earlier by using ( B;, By ) or ( By, By ), B1s sure to
lose at most 2.5. Thus, for B, the mixed strategy using ( By, By ) will
not be optimal.

This is also obvious from the graph. Because, for the two strategies
(B;, By ), the point M, the intersection of the lines, is not the

maximin point but 3 is the maximin point. But 3 cannot be the value of
the original game ; hence the 2 X 2 sub-game with ( B;, By ) will not

provide the optimal solution for B.



\ /

Ex. 3. Use dominance to reduce the following game problem to

2 x 2 game and hence find the optimal strategies and the value of the
game >

PLAYER B
31-2|4
PLAYERA (- 1| 4|2
2
i [ Visva-Bharati, 1988 ]

Let (x,, x,, X;) and (y,,y, y,) be the probabilities with which A
and B play the game.

We see that the first column is dominated by the

third column. and hence the third column is s
deleted. The resulting 3 x 2 payoff matrix is 31-2
written. | A | -1

Now we see that the third row dominates a

convex linear combination of the first and second
row ; for example,

the elements of % (first row) + % (second row)

are actually (-;-- %), (- 1+ 2)or, 1,1

which is dominated by the third row elements 2, 2. Hence either first
or second row can be deleted (Rule iv). We delete the first row and the
game reduces to the 2 X 2 payoff matrix

- 114
212
Solving as in the first example, we get the optimal solution as
- 1-4 — 5
= P, = _
2 %3 "‘1+2*(4+2) “5—1,
_2-4_2  -1-2 3 - 2-8
yl—_s—s’yz" — 5 =§ and v = _ 5 = )




We associate a probability  zero with the discarded row apq
column. The solution of the complete game is thus A (0, 0, 1),
B [ 2 ()]and y=2,

55

Note. Notice that the final 2 x 2 matrix may further be reduced, since the second
column, which is the dominating column, may be deleted and then from the reduced
matrix the first row of that matrix being dominated by the second, may be deleted.
Thus the optimal solution becomes for A (0,0,1), for B (1,0, 0) and value of the
game is 2. '

Ex. 4. Two players A and B match coins. If the coins match, then A
wins one unit of value and if the coins do not match, then B wins one
unit of value. Determine the opnmum strategies for the plavers and the

value of the game. [Delhi M. B. A., 1972 ]

The payoff matrix for the matching players A and B in which H
and T denote respectively the head and tail of a coin is given below.

As can be seen, there is saddle point for B
the game and no reduction is possible by H T
dominance. Let (x,, x,) and (y,, y,) be H I 1 -1 ]
the probabilities with which A and B play A i |
their pure strategies. r L_l | 1
As in the first example, the optimum mixed strategies will be
e+l 2 1 11
Cl+l-(=1-1) 47 2> ™ 2 27
N EVEIN Y
v = value of the game = 1—-:1~1— 0.

Ex. 5. For the following payoff table, transform the zero-sum game
into an equivalent linear programming problem and solve it by simplex
method :

PLAYER ¢ We formulate the problem for

the player QO.
QI Q2 Q3 Cp Y Ql
P, * 9 i 1 ] lMaximize = Yi+ Y.+ Y
[ 1 1 1! |
PLAYER P Pz l 0 'i () l ’; ‘SUbJCL( to 9Y1+ Y + 4)‘> l‘
p, s 218 6Y, + 3¥.< |
) | | < I

S5Y, + 2Y,+ 8Y,
Y, Y, Y. 2 O0and y=vY, (y= L 2, &)



and v 18 the maximum expected loss to Q.

We introduce the slack variables Y., Yi, Y. respectively and then

apply the simplex method. We get the tables by iteration as shown
below.

L R 1 0 0 0
| __ Cs | Ys b | a a,  a a, as | a
0O | Y. 1 (9l 1 4 I o 0
0o Y 1 0 6 3 0 1 0
o Yo 1 5 2 8 0o | 0 1 |
| S0 -1 -1 -1 0 o | 0
[= —a m-.»T-
i ! 4 1
0o Y 1 0 |6 3 0 1 0
0 | Y. : 0 2 %,3 »4 :i Lo |
s 0 -3 -3 | 5 | 0|00
| | i S S
' |
I O 2 L T T -
| 1
LY. | 20 150 e |0
N Tl _s |1 1
0 Yo | s 0 0 TR L
1 | 4
o 0 -5 5 0w 0
I, 21 0 0 14 0 -
1 | Y, 73 | 91 91
| s | 2 | _9
1Y, 3170{ 0 1 0 TR BT R T
: 1 o _ 13 | 18
1 | Y, 55 o 0 1 T Tm 9
: ) | | 1 ! 13 [ 2
200 0 0 3w |

The expected value of the game is thus 2.

— _ 21 91 _ 7
Hencey, = vY = = -2 = 5 )
imi = 3 , = |
Similarly y,= J and y,= —.



The optimum values of X,, X,, X; are obtained from the dual

13 2
solution 2 TRETRETE

2
91

Hence x,= vX, = -2-.

B2

Similarly x,= 2 and x,= .

13

Hence the optlmum solution is given by P (3 5

_ 9
andv = 2.
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