3. SETS IN R

3.1. Intervals.

Let a.b € R and a < b.

The subset {z € R: a < 2 < b} is said to be an open interval. The
points a and b are 'called the end points of the interval. a and b are not
points in the open interval. This open interval is denoted by (a,b).

The subset {z € R: a < z < b} is said to be a closed interval. The

end points a and b are points in the closed interval. This closed interval
is denoted by [a, b].

The subsets {z € R:a <z <b} and {z € R: a < z < b} are said to
be half open (or half closed) intervals. One of the end points is a point
in the interval. These half open intervals are denoted by (a, ] and [a, b)
respectively.

The subset {x € R : > a} is an infinite open interval. This is
denoted by (a, ).

The subset {x € R : > a} is an infinite closed interval. This is
denoted by [a, 00)

The subset {x € R : z < a} is an infinite open interval. This is
denoted by (—o0,a).

The subset {z € R : z < a} is an infinite closed interval. This is
denoted by (—o0, a.

When both the end points of an interval belong to R, the interval is
said to be a bounded interval.

Therefore the intervals (a,b), [a,b], (a,b], [a,b) are all bounded inter-
vals.

The intervals (a, 00), [a,00), (—00,a), (=00, a] are all unbounded in-
tervals,

If @ — b, the closed interval [a, a] is the singleton set {a}.

The set R is also denoted by (—00,00). This is an unbounded interval
Without end points.
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3.2. Neighbourhood.

let ¢ ¢ RA subset S ¢ Ris said to be a neighbourhood of ¢ if thers
exists an open interval (a.b) such that c € (a.b) C S. . ‘ .
Clearly. an open bounded interval containing the point ¢ is a neigh,
bourhood of ¢. Such a neighbourhood of ¢ is denoted by N(c).

A closed bounded interval containing the point ¢ may not be a neigl.
bourhood of ¢. For example, 1 € [1.3] but [1.3] is not a neighbourhood
of 1

let « € Rand 8 > 0. The open interval (¢ — d,c + d) is said tg
the d-neighbourhood of ¢ and is denoted by N(c.d). Clearly, the 4
neighbourhood of ¢ is an open interval symmetric about c.

Theorem 3.2.1. Let ¢ € R. The union of two neighbourhoods of c is a
neighbourhood of c.
Proof. Let S; € R.S; € R be two neighbourhoods of c. Then there
exist open intervals (aj,by).(ag,bz) such that ¢ € (aj,b1) C S1 and
c € (az.by) C Sy.

Then a; < by.ap < byia; < by,agy < bg. Let az = min{al,ag}, b3 =
max{b;.b2}. Then (a;.by) U (az,b2) = (a3, b3) and ¢ € (a3, b3).

(ay.by) € Sy U Sy and ((Lg.bg) Cc 5US = (ag.bs) = (a;,.by) U
(az.b) C 51 US,.

Thus ¢ € (az, bz) C S; US;,.

This proves that S; U S, is a neighbourhood of c.

Note. The union of a finite number of neighbourhoods of ¢ is a neigh-
bourhood of c.

Theorem 3.2.2. Let ¢ € R. The intersection of two neighbourhoods of
¢ 1s a neighbourhood of c.
Proof. Let S; < R.S; € R be two neighbourhoods of ¢. Then there
exist open intervals (a;.by), (az,by) such that ¢ € (ay,b;) C S, and
c € (az,by) C S,

Then ay < byay < byiay < by.ay < by, Let ag = max{a,az}, by =
mindby by} Then (ay,by) M (ag, by) = (az,bz) and ¢ € (as, bs).

tsby) = (ay.by)rilag.by) © (a;,by) C ) and (as,bs) = (ar,by)0
aygby) © lag.by) € Sy = (ag,by) € SN S,
Thus ¢ € (ag. by) © S, NS,

I'bis proves that S, (1S, is a neighbourhood of ¢.

Note. ] T i a fini [ nei
ote. The intersection of a finite number of neighbourhoods of a point
e a neighbourhbood of

SETS IN R

The intersection of an infinite number of neighbourhoods of a point
¢ may not be a neighbourhood of ¢

5 . =

For example, for every n € N, (- .

= "' "’ ) = {0}. This is not a neighbonurhood of O
1

!} is a neighbouhood of O
n

3.3. Interior point.

Let S be a subset of R. A point r in § is said to be an mterior pomnt
of § if there exists a neighbourhood N(r) of r such that Nir S

The set of all interior points of S is said to be the mmterior of S and
is denoted by int S (or by 57).

From definition it follows that S” © S for any set § — R

Examples.
1fLet S={1,4,3.- -’} ‘
Let r € S. Every neighbourhood of r contains some points not in 5
So z can not be an interior point of S. Therefore int S = o
2. Let S =N.
Let r € S. Every neighbourhood of r contains points not belonzing
to S. So r can not be an interior point of S. Therefore int S = ©
3. Let S = Q.
Let r € Q. Every neighbourhood of r contains rational as well as
irrational points. So r can not be an interior point of 3. So 57 = o

4. Let S = {r e R: 1 < z < 3}. Each point of S is an interior point of
S.Soint S =S.

5. Let S = R. Each point of S is an interior point of S
S5°=23.

6. Let S = ¢. S has no interior point. Therefore int S = o

Therefore

3.4. Open set.

Definition. Let S be a subset of R. S is said to be an open set if
point of S is an interior point of S.

each

Examples.

L. Let & {1, TR TRRRERE }. No point of S s an interior point of S. S is
not an open set.

2. Let S — 7. No point of 8 is an intertor point of 8 N is not

ot an open
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3. Let S — Q. No point of S is an interior point of S. S is not an Opey
set
4. Let S — {r ¢ R:1 < <3} Each point of S is an interior poing of

S. S is an open set.

5. Let S {reR:1<x <3} 1and3belong to S but they are not
interior points of S. S is not an open set.

6. Let S = R. Each point of S is an interior point of S. S is an Open
set
7. Let § = ¢. S contains no point. Therefore the requirement in the

definition is vacuously satisfied. S is an open set.

Theorem 3.4.1. Let S C R. Then S is an open set if and only if § =
int S.

Proof. We prove the theorem for a non-empty set S because if S = ¢
then o = int ¢ holds and also ¢ is an open set.

Let S be a non-empty open set and let € S. Then z is an interior
point of S.

Thus r € S = r € int S. Therefore S C int $

......... (i)

Let y € int S. Then y € S by the definition of an interior point.
Thus y € int S = y € S. Therefore int S C S ... ... ... (ii)
From (i) and (ii) we have S = int S.

Conversely, let S be a non-empty set and S = int 5.

Let r € S. Then z € int S, since S = int S.

Thus each point of S is an interior point of S and therefore S is an
open set.
This completes the proof.

Theorem 3.4.2. The union of two open sets in R is an open set.

Proof. Let G, and G, be two open sets in R.

Let r € Gy UG, Thenx € Gy or z € (.

Let 2 € Gy. Since Gy is open set and z € G,z is an interior point
of Gy, Therefore there exists a neighbourhood N(z) of z such that
N(z) < G,.

N(z)c Gy = N(z) C Gy UG,.

This shows that z is an interior point of Gy U Gy.

Siuce r is arbitrary, every point of (;; U G4 is an interior point of
Gy UGy Therefore Gy 1 Gy is an open set.

If however. oz € (i, we can prove in a similar manner that Gy UG2 ¥
an open set. This completes the proof.,

gy —
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. . . s o n set
Theorem 3.4.3. The intersection of two open sets in R is an open

Proof. Let Gi and G5 be two open sets in R.

Case 1. G NGy = ¢. Since ¢ is an open set, (71 (1 (7 is an open 6
ase

Case 2. G1NG2 #¢. Let z € Gy NGy Then r € G and r € G.
Gince (1 is an open set and x € (71, z is an interior point of G,
Hence there exists a positive 4, such that the nei 1bourhood

N(r.61) C G
Since Gy is an open set and x € G, z is an interior point of Gz.
Hence there exists a positive d; such that the neighbourhood

N(z,02) C Ga.

Let & = min{d;,d2}. Then 6 > 0.

N(z,6) € N(z,81) C Gy and N(z,6) C N(z,02) C Ga.

Consequently, N(z,8) € Gy N Gs.

This shows that z is an interior point of Gy N G>. Since z is arbitrary.

G, NGy is an open set and this completes the proof.

Theorem 3.4.4. The union of a finite number of open sets in R is an
open set.

Proof. Let Gy, Ga, ..., G, be m open sets in R.

Let G =G UG U---UG,,.

Let z € . Then z belongs to at least one of the sets, say Gj. Since
G is an open set and z € Gy, is an interior point of Gx. Hence there
exists a neighbourhood N(z) of z such that N(z) ¢ G.

N(z)C Gp = N(z) C G.

This shows that z is an interior point of G. Since r is arbitrary. G is
an open set. This completes the proof. '

Theorem 3.4.5. The intersection of a finite number of open sets in R
18 an open set.

Proof. Let (1, G, ... , G be m open sets in R.
Let G =i NGan---NGy.
Case 1. G = ¢. Then G is an open set, since ¢ is an open set.
Case 2. (7 £ ¢. Let r € G. Then r € G, foreachi =12 .  m
Since (7} is an o set ¢ 3 i itive &
(7] s pen set and r € (71, there exists a positiv suc
that N(x,8,) C G,. S
Since (73 is an open set and x € ¢

2, there exists a positive 4. -
that N (g, 02) C Gy. Postive; 9 anch
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Since G,y is an open set and = € G,, there exists a positive §
that N(z.8m) C G e

Let § = min{é;,d2,...,0m}. Then § > 0.
N(x,9) C N(T,tsl) c Gy
N(z,8) C N(z,82) C Go
N(z,8) C N(z,6m) C Gm.
Consequently, N(z,8) c Gi NGy N--- NGy =G.

This shows that « is an interior point of G. Since z is arbitrary, G|
an open set. This completes the proof.

Theorem 3.4.6. The union of an arbitrary collection of open sets in|
is an open set.
Proof. Let {Gq : @ € A}, A being the index set, be an arbitrary collectio
of open sets in R. Let G = U G,.
a€A

Let z € G. Then z belongs to at least one open set of the collectia
say Gi, (A € A).

Since G is an open set and z € Gy, z is an interior point of Gx.

Therefore there exists a neighbourhood N(z) of z such that N (z)(
Gx. N(z) CGy= N(z) CG.

This shows that z is an interior point of G. Since z is arbitrary, Gi
an open set and the proof is complete.

Note. The intersection of an infinite number of open sets in R is m
necessarily an open set.

Let us consider the sets G; where
G ={zcR:-1<z<1}
Gz={$€RZ—%<Z<%}
an{zGR:—%<z<%}
Each G, is an open set. °rﬁ’1 G; = {0}. This is not an open set.
i=
Let us consider the sets G; where
Gy ={zeR:-1<z<1}
Gy={zcR:-2<z<2}

G,={zeR: —n<z<n}

s )
Each G, is an open set. (1 (; = (). This is an open set.
f i ]
1

(]
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From these two examples we conclude that the intersection of an

infinite number of open sets in R is not necessarily an open set
Theorem 3.4.7. Let S be a subset of R. Then int S is an open set.
Proof. Case 1. int S = . Since ¢ is an open set, int S is an open set.

int $ # ¢. Let z € int S. Then z is an interior point of S.

Case 2. . ”
Therefore there exists a neighbourhood N(z) of z such that N(z)c S.
Let y € N(z). Then N(z) is a neighbourhood of y also and since

N(z)C S,yisan interior point of S.
Thus y € N(z) =y € int S. Therefore N(z) C int S.
This shows that z is an interior point of int S.

Thus z € int S = z is an interior point of int S.
Therefore int S is an open set. This completes the proof.

Theorem 3.4.8. Let S C R. Then int S is the largest open set contained
in S.
Proof. By the previous theorem, int S is an open set and int S C S. by
definition.

Let P be any open set contained in S.

Let = € P. Since P is an open set, T is an interior point of P.

Therefore there exists a neighbourhood N(z) ot x such that N(z) C
P. But N(z) c P = N(z) C S, since PC S.

This shows that z is an interior point of S, i.e. 7 € int S.

Thus z € P = z € int S. Therefore P C int S.

Since P is arbitrary, int S is the largest open set contained in S.

Note. int S is the union of all open sets contained in S.

‘Worked Examples.
1. Prove that an open interval is an open set.

Let I be an open interval. Four cases arise.

Case 1. I = (a,b) for some a,b € R, with a < b.

Let ¢ € I. Then I itself is a neighbourhood of ¢. say N(¢) and
N(c) C I. This shows that c is an interior point of I. Thus every point
of I is an interior point of I and therefore / is an open set. )

Case 2. I = (a,00) for some a € R.

Let c€I. Thena<c< . Let de (¢.x). Thena < ¢ < d.

The open interval (a, d) is a neighbourhood of ¢, say N (¢) and N(¢) C
I. This shows that ¢ is an interior point of I. Thus every point of I is
an interior point of I and therefore I is an open set.
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Case 3. | = (~~.a) for some a € R.

Similar proof.
Case 4. | \
Similar proof.

LX)

2. Let S
open set.
S-T=G3DUu@G HPUG.Hu---
S — T is the union of an infinite number of open intervals. Since 5
open interval is an open set, S — T being the union of an infinite numbe
of open sets is an open set.

(0.1 and T = {}:n=1,2,3,...}. Show that S ~Tisy

We have seen that an open interval is an open set in R and the uniq
of any collection of open sets is an open set in R. Therefore the union
an arbitrary collection of open intervals is an open set in R.

The following theorem deals with the converse problem and it depic
the structural composition of a bounded open set in R.

Theorem 3.4.9. A non-empty bounded open set in R is the union of
countable collection of disjoint open intervals.

Proof. Let G be a non-empty bounded open set in R. Let € G. Sine
(5 is an open set. there is an element y, < x and an element z, > x sud
that (y,.x) C G and (z,z2,) C G.

Let A={y:(y.1) CG}. B={z:(x.2) CG}.

Then A is a non-empty set, since y, € A; A is bounded below, sine
> 1= bounded below. Let a = inf A.

Similarly, B is a non-empty set bounded above. Let b = sup B.

Then a < r < band I, = (a.b) is an open interval containing x. W
prove I, C G.

letwel,anda<zr<w<h.

Since b = sup B. there exists an element 2’ € B such that w < 2’ <!

I'herefore (r.z') © G, since 2’ € B. Therefore w € G.

If however, w e I, and a < w < r < b, then also w € G.

Thus w = [, = w e G and therefore I, C G.

We prove a -'," G ’I f/ (Iv,

If b

open set

. then for some positive ¢, (b — e,b+ ¢) C G, since G i8¥
Levéo e Thenb < bh+6<bteand b+ 6 € G contradictit
the defiition of b Therefore b ¢ ¢ Similarly, a ¢ G.

Lev G be the collection of open intervals {1, : r G}. Let H= u b
! el
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Let £ € G. Thenr € I, and I, C H.
Thus r € G = 1 € H. Therefore G — H.
Let y € H. Theny € [,and I, € G.
Thusy € H=>y<G. Therefore H < (.
H=

U T.
reGG

Il

Consequently. G

We prove that two distinet intervals in the collection G are disjoint

D1

Let (a,b).(c.d) be two intervals in this collection with a point
common.

Then ¢ < b and a < d.

Since ¢ € G. ¢ does not belong to (a, b) and therefore

Since a € G. a does not belong to (c.b) and therefore a < ¢

¢<aand a<c=a=c. Similarly b=d.

Tl:erefore two distinct intervals of the collection are disjoint

Thus G is the union of disjoint collection of open intervals {1,
G}.

We show that the collection is countable.

I‘//.’

N~

——7

Let G' be the collection {I, : @ € A} where [, is an open interval and

A is the index set.
Let A € A. Then I, is an open interval of the collection &
Let x € Iy. Then there exists a positive § such that (r—d0.x+0) C Iy

There exists a rational number ry such that r—3 < ry < r+4. Therefore

ry € QN Iy
Let us define a function f: A — Q that assigns \(= \) to ry = Q
Since I,’s are disjoint. the function f is injective.
Since Q is an enumerable set and f is an injective function. .\ i~ a
most enumerable. Hence G’ is a countable collection.
This completes the proot.

3.5. Limit point.

Definition. Let S be a subset of R. A point p in R 1s said to be

limit point (or an accumulation pownt, or a cluster pomnt) of S 1f every

neighbourhood of p contains a point of S other than p.
Therefore p is a limit point of § if for each positive e
(N(p.e) = {p} NS #o.

N(p,e)—{p} is called the deleted e-neighbourhood of p and 18 denoted

by N'(p,e). N(p) — {p} is called the deleted nerghbourhood of p and
denoted by N(p). .

Therefore p is a limit point of 8 if every deleted neighbourhood
contains a point of §
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Theorem 3.6.2. Bolzano-Weierstrass theorem.

Fvery bounded infinite subset of R has at least one limit point (in R),

o subset of R. Since S is a non-empy

Proof. Let S be a bounded infinit
) = sup S ang

bounded subset of R, sup S and inf § both exist. Let s*
infS. Thenre€ S=s5, << sT!
Let H be a subset of R defined by H = {r € R : z is greater thay

infinitely many elements of S}
Then <* € H and so H is a non-empty subset of R.

S

Let h € H. Then h is greater than infinitely many elements of §
and therefore B > s.. because no clement < s, exceeds infinitely many

elements of S.
Thus H is a non-empty subset of R, bounded below, s. being a lower

bound. So inf H exists.
Let inf H = &. We now show that ¢ is a limit point of S.
Let us choose € > 0.
Since inf H = €. there exists an element y in H such that { <y < {+e
Since y € H. y exceeds infinitely many elements of S and consequentlyi
£ — ¢ exceeds infinitely many element of S.

Since £ is the infimum of H. £ —e does not belong to H and so £ —¢ can
exceed at most a finite number of elements of S. Thus the neighbourhoo
£ — ¢.£ = ¢) contains infinitely many elements of .S.

This holds for each € > 0. Therefore ¢ is a limit point of S.

This completes the proof.

3.7. Derived set.

Definition. Let S be a subset of R. The set of all limit points of S is
said 10 be the derved set of S and is denoted by 5.

Examples.

1. Let S be a finite set. Then S = ¢,
2. Let S =N. Then 8§’ .

3. Let S=27Z. Then 8 )

4. Let S = Q. Then 8’ - R.

5. Let S =R Then 8" — g

6. Let S = ¢,

Then 8" — ¢

—7——
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Theorem 3.7.1. Let A. B be subsets of B and A © B. Then Vv B
Proof. Case 1. A’ = ¢. Then A’ C B'.

Case 2. A’ # ¢. Let pe A’. Then p is a limit point point of A
Let € > 0. Then N(p, €) contains a point of A, say q. other than p
q € A= q € B. Therefore N’(p.¢) contains a point ¢ of B.
Since € is arbitrary, p is a limit point of B. Therefore p < B’. Thus

pe A’ = p € B’ and therefore A’ C B'.

This completes the proof.

Theorem 3.7.2. Let A C R. Then (A") C A

Proof. Case 1. (A’)’ = ¢. Then (A")’ C A'.

Case 2 . (A") # ¢. Let p € (4’)'. Then p is a limit point of A
Let € > 0. Then N(p, €) contains a point of A’. say g. other than p.

Since ¢ € A’, g is a limit point of A. Therefore N(p.€) being a
neighbourhood of ¢ also, contains infinitely many points of A.

Since N(p, €) contains infinitely many points of A, p is a limit point
of A. That is, p€ A’.
Thus p € (A’) = p € A’ and therefore (A’) C A"

This completes the proof.

Theorem 3.7.3. Let A, BCR. Then (ANB) C AN B’
Proof. ANBC A= (ANB)' C A/, since AC B=A'"C B
ANBCcB= (ANB) C B',sinceAC B=A"CB".
It follows that (AN B) C A'NB’.
Note. (AN B)' # A’ N B’, in general.

For example, let A ={0,1,1,%,---}, B={0.—-1.—3.—5.---}. Then
A= {0}, B = {0}. ANB = {0}, AN B’ = {0}, but (AN B) = o

Corollary. Let A, Az,..., A, be subsets of R. Then (A, N A,
Ap) CcANA N NALL
Theorem 3.7.4. Let A and B be subsets of R. Then (AUB) = 4 B
Proof. Ac AUB= A" C (AUB),since AC B= A" B
Bc AUB= B C (AUB) ., since AC B> 1\ - B
It follows that A’ U B’ C (AU BY
We now prove that (AU B) ¢ AU B’
Let pg A/ U B’ Then p¢g A" and p ¢ B

......... (1)
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10. Let G C R be an open set and F ¢ R be a closed set. Prove that ¢
~F

is an open set and F — G is a closed set.

11. Let G be an open set in R and S be a non-empty finite subset of G, p
- Proy,

that G — S is an open set.

12. Let GG be an open set in R and S be a subset of R such that Gn g <
Prove that G NS = o. ¢
[Hint. GNS=0=SCG =5 C (G°) = §' C G(since G is closeq j
R\:\(;‘.\":O.] ;
13. G is an open set in R and A C R. Prove that GN AcCGnA.
Deduce that GNA =GN A.

[Hint. ) GNACGNAandGNA' CGNA (i1)G N A being the smallest clogg
set containing GNA,.GNACGNA;and GNACGNAUGNA']

14. Let S be a bounded subset of R and sup S = b,inf S = a and a # b. Proy
that [a.b] is the smallest closed interval containing the set S.

15. Let S be a non-empty subset of R bounded below and S. = inf S. |
S. € S. prove that S. is a limit point of S and S. is the least element of S'.

16. If § be a non-empty bounded subset of R, prove that supS € S an
mfSeSs.
17. (i) Prove that ext (AU B) = (ext A)N (extB) for subsets A,BofR.
(ii) Prove that the complement of the exterior of a subset S of R is th
closure of S.
(iii) Prove that the exterior of the complement of a s

interior of S.

ubset S of R is the

18. A set S C R is said to be a discrete set if 8’ = ¢.
A set S R is said to be an isolated set ifsSns' =

of S is an isolated point).

¢ (i.e., if each poin

(i) Prove that every discrete set is an isolated set, but not conversely.

(ii) Give an example of an infinite discrete set S C R.

(iii) Give an example of a bounded discrete set S C R.
(iv) Can there be an infinite bounded discrete set S C R?

19. Let S« B A point z € R is said to be a boundary point of S if ever
neighbourhood N(z) of z contains a point of S and also a point of R~ s
that it is a limit poit

If a boundary point of S is not a point of S, prove
bounds!

of . Prove that aset S ¢ R is closed if and only if S contains all it

points.
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3.11. Nested intervals.

If{In :n€ N} be a family of intervals such that [, .1
n € N, then the family {I,,} is said to be a family of nested intervals

~ I, for all

Examples.
1. Let I, ={r€R:0<r< 1y,

Then I; = (0,1), Iy =(0,3), Iy =(0.5).-+~ -+
L DI DI3D - -
{I,:n€ N} is a family of nested open and bounded intervals.

9. Let I, ={reR:x>n}
Then I o1, DI3D - -
{I,:n€N}isa family of nested open infinite intervals.

3. Let [, ={reR: -1 <z<l}
Then I; D I2 I3 D -
{I,:n€ N} is a family of nested closed and bounded intervals.

4. Let I, ={reR:x <1}
Then I, D IpDI3 D -
{I,, : n € N} is a family of nested closed infinite intervals.

Theorem 3.11.1. Theorem on nested intervals.

If {[an, bn) : n € N} be a family of nested closed and bounded intervals
then norjl[an, b,] is non-empty.

Furthermore, if inf{(b, —a5) : n € N} = 0, then there is one and only

one point z such that z € ’r?l[a,,, by
=

PT‘OOf. [al,bl] D [az,b2] D [ag,bg] Doeee eee

Thena; <a;<ag - <an <+~ <by <o < by < by < by

The set A = {a, : i € N} is a non-empty subset of R bounded above,
b; being an upper bound. By the supremuim property of R, sup A exists.
Let sup A = x. Then a, < z for all n € N.

We now establish that b, > r for all n € N.

If not, let b,, < x for some m € N.

Since r is the lub of the set {a, a2 ay....} and b, < r. there is an
element ax such that b, < ax <.

Let ¢ = max{m, k}. Then b, < b,, and ax < ag.

Consequently, by < b, < ax < ay

. This shows that b, < a4, a contradiction, since lag. hq' Is an interval

of the family. '
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N and therefore an <z <by foralln &N

N for all n €
mee b, > x for al
Hence -

1 hat 18, X' ¢ . ) l(]n. bn . |
L < A T is ll—(‘“lp f

s pr N & N I vUn 18 1O ‘\

1\‘\‘ oves tha ) ‘;”” b S t

oo
able e N |a .b,,].
Second part. 1f possible, let 7 € ":1[ n

Then a, < T <bn, @n S o <by forallnée N.
Therefore ap = bn ST~ 1 < by — Qn-
o 0<lx—a"|<by —an for all n € N.

):nEN}———O,bn—an ZOff)rallneN
of the set (corresponding to som
—am <€

Let ¢ > 0. Since inf{(bn — an
and there exists an element b — Am
natural number m) such that 0<bm : /

Therefore 0 <| x — 2’ |< €. Since € is arbltrz.iry, =21

This proves that x is unique and the proof is complete.

Note 1. The set B = {b; : i € N} is a non-empty subset of R boundg
. oo
below. If inf B =y, then y € ngl[an, bn].

Note 2. If {I, : n € N} be a family of nested open bounded intervi

then 7 I,, may not be non-empty.
n=1 ) -
For example, if I, = (0, ;-), then nr_il I, = ¢.

Note 3. If {I,, : n € N} be a family of nested closed unbounded intervak

2 <
then N I, may not be non-empty.
n=1

For example, if I,, = [n, o), then ?101 I, = ¢.
n=

Utilising Nested intervals theorem we now give an alternative prod
of Bolzano-Weierstrass theorem (Theorem 3.6.2)

Another proof of Bolzano-Weierstrass theorem.

Every bounded infinite subset of R has at least one limit point (in R).
Proof I.m”S be a bounded subset of R containing infinite number o
elements, Sm('r:A,S 5 & non-empty bounded subset of R, sup S and inf
exist. Let g = inf S, by = sup 5.

vJ]A(“ .’",-, < : I
o el =< by, ie,ze [a1,b1]. Thus S is contained I
he closed and hounded nterval J; = lay b

Lot ¢ a

+ b s
574 Then at leas J
] Arat least one of the closed infervale -
st contain infinite)y Inany e - Cosed intervals [ay, e, [ens I

cments of S, Because, otherwise, § woul

SETS IN R 7

he a finite set. We take one such subinterval containing infimtely many
elements of S and call it I, = [ag, by).

I, C Iy and | I |= ’)J—,;ll.

Let cp = i‘%’ Then at least one of the closed intervals PRI R)
must contain infinitely many elements of S. We take one such subinterval
containing infinitely many elements of S and call it I =

I3ChClhand | I3 |= '112;2"L_

as. by

+b P . N, . .
Let c3 = %312 7 +. Continuing in a similar manner we obtain a famils

of closed and bounded intervals { I, } such that

G)1DLDI3 D -

(ii) | In |= z2=5 (b1 — ay), for each n € N

(iii) I, contains infinitely many elements of S. for each n € N.

So {I, : n € N} is a family of nested closed and bounded intervals
and inf{(b, — an) : n € N} = 0.

By the nested intervals theorem, there exists precisely one point r
such that {z} = ?i[an, bn].

We now prove that z is a limit poirit of S.

Let € > 0. Since inf{(b, — a,) : n € N} = 0, there exists a natural
number m such that 0 < b, — a,, < €.

Since z € I, and by, — ap, <€, I, C N(z,€).

Since I, contains infinitely many elements of S, N(z.€) contains in-
finitely many elements of S and this happens for each € > 0.
Therefore z is a limit point of S.

Thus S has a limit point and the theorem is done.

Theorem 3.11.2. Cantor’s intersection theorem.

Let Fy,Fy,F3,... ... be a countable collection of non-empty closed
and bounded subsets of R such that F} D F, D F3 > -+ --.

o0 .
Then the intersection ﬂl F; is non-empty.

i=
Proof. Case 1. Let the collection be a finite collection containing
non-empty closed and bounded subsets F\, F,, ..., F,,, such that F,
D D Fy,.

m . . .
Then obviously, N F; = Fy, and this is non-empty by hypothesis.
Rl ¥ by hy

Case 2. Let the collection be countably infinite. Without loss of gen-
erality, we we assume that no two sets of the collection are equal sets.




4. REAL FUNCTIONS

4.1. Real function.

Let X be a non-empty set. A function f : X — R is called a real
valued function on X. For each z € X, the f-image, denoted by f(z)
(which is also called the value of f at z), is a real number.

For example, the function f : C — R defined by f(2) = ||,z € Cis
a real valued function of complex numbers.

Let D be a non-empty subset of R. A function f: D — R is said to
be a real valued function of real numbers. Such a function is also called
a real function.

D is said to be the domain of f. The set f(D) ={f(z):z € D}isa
subset of R and it is called the range of f.

Examples.
1. Let ¢ € R and f : R = R be defined by f(z) = ¢, z € R. The range of

the function f is the singleton set {c}. fis called a constant function.

2. Let D = {z eR;;g#O}andf:D—>Risdeﬁnedbyf(a:) =Llz+#o0.
The range of f is {r € R:z 7 0}.

3. Let D = {s € R:z >0} and f: D= Ris defined by f(z) = v,z €
D. The range of f is {z € R : z > 0}. f is called the square root
function.

4. Let f: R — R be defined f(z) = sinz,x € R. The range of f is
lreR.—1<z<1}. fis called the real sine function.

"R — R be defined by f(x) =| x |, € R. The range of the

r"' IJ“' f
seR:x> 0}. fis equivalently expressed as

f‘lnf'tiu“ 18 {
o) = x,2 >0
J', I < “-

[ is called the absolute value function.
6. Let f: kR R be defined by f(r) = sgnr,re R,

n r = lj!.J- # 0
0,r = 0.
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1.0.1}. [is equivalently XDresgy

The range of 18 {he finite set {

as

1.r>0

0.r=0

1. <0

7 i« called the signum function.

fir)

= let f:R > Rbe defined by f(x) = [x].7 € R Mg th? g;eat.estl Ity
& not greater than x. The range of the function 18 &- [ is equiva entl
ger oL} bt
expressed as
flr)=00<r<1
~1.1<r<2

=22<2<3

~1.-1<r<0
= -2-2<r<-1

11

7 is called the greatest integer function.

For everv € B, x> [z]. The difference hetween z and its integ
part 1 is called the fractional part of x and is denoted by {z}.

Therefore {1} = z — [z] for all real . It also follows that 0 < {z}<I
for all real 1.

For example. {.3} = .3, {2.3} = .3, {2} =0, {-.3} =.7.

Definition.

A function [ defined on I = [a, b] is said to be a piecewise constant
function on J (or a step function on I) if there exist finite number d
;m‘.:m Io.1y.. ... Inla =19 <13 < <z4_) <z, =b) such that |
s @ constant on each open subinterval (z4_y,z) of la,b]. That is, fo
ach l, 1.2 n_there is a real number s; such that flz) = sp fo}a“

Ziovv ) flrgy). f(rg) need not be same as s, k=1,2 n

2. Injective function, Surjective function

Lt D 4 f i =) S sa
“oAlunction f:D 5 Ris sai ve (or on
i ) 1S S¢ mnj }
S for 1w ,1"'“‘4‘ "l““l"lllh Iy r ] ) l(l't() })(3 lllJ(f(‘tl 4 ( T e-0I e)
ORI ”l(‘ fl“l('ti()llﬁ,l Vﬂ]u(‘s f(—rl) d

.' Ly are distine

la ) p gy i
g LA functj . .
) f f(1)) - on f:D < E i said to be surjective (of

o
} % ‘/,,fu",,u

the fuge
on f ok "
5 R e

1
DOV yve | |y

fined by fla) =

Al ” 1 i
A WG st et points sin x,r € R¥

T and 97 \
and 27 in the domain R havt

R N c@
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the same functional value. f is not surjective, because the range of f is
{reR: —1 <z <1}, a proper subset of the co-domain set.

4.3. Equal functions.

Let D C R. The f.un(‘tions f:D - Randg: D — R having the
same domain D are said to be equal if f(z) = g(z) for all z = D.

Examples.

1. Let f(z) = |z|,z > 0;9(z) = 2,2 > 0.

Then f and g have the same domain {z € R:z > 0} and f(z) = g(z)
for all z in the domain. Therefore f = g.

2. Let f(z) = ,/%.I€ACR;9(1)= %.J‘EB:R.
Here A={z€R:x>1}U{zeR:z<0}, B={rcR:r>1}
f and g have different domains. Therefore f # g.

4.4. Restriction function.

Let D C R and f: D — R be a function. Let D, be a non-empty
subset of D. The function g : D, — R defined by g(x) = flz).z € D, is
said to be the restriction of f to D, and g is denoted by f/D

Examples.
1. Let a function f : R — R be defined by f(r) = sgn z.z < R

Let D, = {z € R : z > 0}. Then the restriction function f/'D, is

defined by f/D, (z) =1,z > 0.
Let D; = {z € R: x < 0}. Then the restriction function f Dy is

defined by f/D; (z) = =1,z <0.
2. Let a function f : R — R be defined by f(r)y=[z].x €R
Let D, ={z€R:0<r< 1}. Then the restriction function f D,is

defined by f/D, (z) =0,0 <z < 1.
Let D, ={reR:1<z< 2}. Then the restriction function f/ D) 1s

defined by f/Dy (z) =1 1<z <2
3. Let D={reR:0<r< Ttand f: D ~+ R is defined by
flx)=V1- sin2r,x € D.
Let D, = {reR: 00 s

is defined by f/Do(x) = cost
*} Then the restriction function f Dy

Let Dl {.l'( R: I SIS

is defined by f Dy(r) = sing - oS L 1Srs 3

1} Then the restriction function [ D,
smr,0~sr~m 4
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» osite function: | o
e , ® be a function Let g : E = R he

L]
Let D - Rand [ :(]I;. _E R Then for each = € D, f(z) €

function on E. where { a real function h: D §

®. We can conceive 0

. o fir)) ¢ K . ,
and “l(‘f‘.'f‘\l! _4“,\(.)1 .z € D. Th(’n h 18 Sa](l to be thﬂ C()mpome

«uch that h(r) = gUf
foetionof fand @ and the

unciion

function h is GXPT"SSC(I as gf or as gof,

Examples.

L letD-lreR:ar>0pand f:D _, Ris defined by f(z) = /2,5
5 i g B — R bo defined by glz) =¢".7 ER.
i = (reR.r>0})f(D)isa subset of the domain of g. T
e omgof D — R is defined by gof(z) = ¢¥%,3 € D,
mposite function gof : D — R is defined by gof(z) ) s 18,
gfiri= x>0
2. Let f R — R be defined by f(z) = 2 +1,z€R Let D={z €k
-~ 0} and g: D — R be defined by g(z) = Vz,z € D. The range of |
7 > 1} and this is a subset of the domain of g.

composite function gf : R — R is defined by gf(z) =

lL.reR.

4.6. Inverse function.

Let D C Eand f: D — R be an injective function. Let f(D) = E¢
% Then f: D — E is injective as well as surjective.

. ‘Lm T D. ljhen flz) =y € E. Each y in E has exactly one pre
uage 1 in . We can define a function g : £ — D by 9(y) = z,y €k

where f Ii=y.

Tx:‘—rh‘o.r': gflr)=rforall r € D and foly)=yforallye E
§ 1 said 10 be the inverse of f and is denoted by f-1! .
The domain of the inverse func

- tion f-1 i
Tange of £~ s the domain of f. f~" is the range of f and the

Alss f7 2 () = =
50 | ,J‘——If’)[<’1”1‘€1)alldff_l(y) yforallyEE
Examph:s. |
1. Let {reR -
L e K - z :
B {reR Lz 0} and flz) = 2 € D. The range of /

£ >0
: “ U= E. say, Ther,

urjective . Then f . is inj :
,Iu tive f:D < Eis injective as well &
e Verse fipetj, /!

Al /-1y, EoDis defined by f-1(,
eIl g ST W= iy € B
This MVers. £ ! d_“ I 2 10) and ( 2 Yy tor all y > 0;

e unction gy called th(‘!/} =y for all 4 > 0.

L1
quare roqt function.
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2. Let D= {J ER TZ0band f(r) = 227 < 0. The range of f
is {7 E R:z20}=E, say. Then f: D — E is injective as well as
gurjective. )
The inverse function f~1: E —, ) i defined by f-1(y) - oy E
AlSUf—]f(l'):l‘foral] 2 <0 and 77;(. )= vy e Lo
i /i TZ0and ff~y) =y forall y > 0
e, —vVr? =z foral z <0 and (—V3)? =y for all y > 0.

is invers ction is ¢ 8 . .
This inverse function is called the negative square root function.

1 Pl — o B .
Note. The function f(z) = 22,7 € B admits of two inverse functions

the principal inverse function is the function described in Example 1.

3. The real sine function defined on R is not injective on X The rangs
of the function is E={r e R: -1 <z < 1}.
Let us consider the subset D = [z ¢ B : -2 < 7 < Z}. Then
. ._ . . ’ - 2 - . z & o
f: D — Edefined by f(z) =sinz.z € D is injective as well as surjective
The inverse function f~! : E — D is defined by f~(y) =sin ' y.y = E.
Also f~lf(z)=xforallz € Dand ff(y) =y forall y € E:
ie.. sin’](sinz) =zfor -5 < r <3 and sinf(sin™' y) = y for

—1<y<L

This inverse function is called the principal inverse sine function.
The domain of the inverse function is {y € R : =1 < y < 1} and the
rangeis {reR: <z < 3}

Therefore —7 < sin"ly < Ffor-1<y<1l

Note. If instead of D, we choose Dy = {r € R:37/2 <z < 572} as
the domain then the function f(z) = sinz.x € Dy, is injective as well as
surjective and therefore it admits of an inverse function f~' : E — D
satisfying the conditions

f~'f(x) =z for all z € D; and ff Hyy=yforalycE.

But this inverse function differs from the principal inverse sine func-
tion as they have different ranges.

Equivalently, we can define many inverse sine functions on the same
domain E with their respective ranges different. This is expressed by
saying that inverse of real sine function is a many-valued function and
this is denoted by Sin~! (or Arc sin). The principal inverse function is
denoted by sin ™" (or arc sin).

Thus sin (Arc sin Y=y for-1<sysl but Arc sin (sinr) = r.in
general.

4. The real cosine function f(r) = cosrx < R is not injective. The
range of the function is £ = {reR:-1<r< 1}

Let us consider the subset D= {rc¢R:
function f: D = E defined by f() = cosrox € D is injective as wel

Then the

| as

0 <<l
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tone functions- . . it il
10“.0 R be an interval. A functlondfll‘ . frikw: f(%)l
Lmt ! ; increasing on Jifr1. 12 € [ an
monoton -
f.1—Ris said to be monotone decre: g
£y < 1 = [lan) 2 f(@2)
] > Ris said to be .m
onotone decreasing o1t I.

be strictly increasing on Tifri,z2€]

4.8. N

on [ if T1,T2 € I apq

onotone On I if f is eithe
A function f :
monotone increasing or m
A function f: 1 = R is said to
and 1, < T2 = f(Tl) < f((l‘z) ‘
. ] - R is said to be strictly decreasin

0 <= f(@) > f(z2):

A function f : [ — Rissaid to be strictly monotone on I if f is either

strictly increasing or strictly decreasing on I.
Let I = [a.b] be a closed and bounded interval. ' . .
A function f : I - R is said to be monotone increasing on I
T1.72 € JTanda <z <2 < b= f(ll) < f(]'g)

Gimilar definitons for a monotone decreasing function.

gonIif z1,72 € I ang

Let I be an interval and f : I — R,g : I — R are both monotone
increasing (decreasing) on I. Then

(i) f + g is monotone increasing (decreasing) on I

(ii) if k € R and k > 0,kf is monotone increasing (decreasing) on [;

(iii) if kK € R and k < 0,kf is monotone decreasing (increasing) on [

Examples.

1 Let flz)=1-~z,2€R.
‘;1'1‘:1”2 e R and Ly < Ly = f{.’E1) > f(.L‘g)
Therefore f is strictly decreasing on R.

2. Let flz) =42z € R

2102 € Rand 0 < 4 « 4, —
. S < 2= f(o) < fa,
L1.29 € L{and,'/;‘/w,‘/uz; ) f(z)

Therdfore £ o o 22 > [(@1) > [(zy).

) :{ refore f g strictly Inereasing on [(), o0) 4 strice i

g »00) and strictly decreasing o8
3. Let f"J/

Sgnr.re -] 11
(4,1

I <0
),Zy3 < rJ ‘ﬂAd z

' :h 7S50 = flay).
72 Jl0) < Y11y

7 flzy) = flxy).
Casing 1

P

Sz, )¢ 2
) > 0.7 ( =d "
; T2 =0 and g,
I!m,»[:

- Iy
Tée
re f s monotone jpey

J

‘
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4.9. Even function, odd function.

For a € R*, let D be the symmetric interval (—a.a).

A function f: D — R is said to be an even function if f{ —r = flr
for all z € D.

A function f : D — R is said to be an odd function if f(—r) -f(x)
for all z € D.

For example,the functions f : R — R defined by f(x) = r*. f(r) =
cosxz are even functions on R and defined by f(x) = r f(r)

sgn x, f(x) = sinz are odd functions on R.
If f be an odd function on (—a,a) then f(0) = 0.

Let f be an odd function on (—a,a) for some a € R*. If (x, f(x)) be
a point on the graph of f, then (—x, — f(z)) is also a point on the graph.
It follows that the graph of f is symmetrical about the origin.

Let f be an even function on (—a.a) for some a € R*. If (z,y) be
a point on the graph of f, then (—z,y) is also a point on the graph. It
follows that the graph of f is symmetrical about the y axis.

4.10. Power functions.
A. Positive Integral powers.
Case 1. Let nn be an cven positive integer.

Let f : B - R be defined by f(z) = z".2 € R. The range of f is
[0,~0).

f is not injective on R since f(c) = f(—c) for all c € R.

Let z;,z7 € [0,00) and 0 < x; < z2. Then f(z1) < flxa). fisa
strictly increasing function on [0,0).

Let 27,29 € (—0.0] and z1 < z2 < 0. Then f(x) > f(z2). fis a
strictly decreasing function on (—oc, 0].

If we restrict the domain of f to [0,2c), then the function
f:]0,50) = [0,00) defined by f(x) = z".z € [0,50) is a strictly increas-
ing function on [0, 00) and therefore f is injective on [0, >c).

For each y € (0, o) there exists a unique x € (0.2c) such that ™ = y
[2.4.23, worked Ex.9]. This together with f(0) = O shows that f 1\\:
surjective.

Therefore f is a bijective function and the inverse function f~lis
defined by Y z)=z7,z€[0.x).

) This inverse function is called the nth root function (n even positive
integer) and the domain of this function is [0. > ).

Case 2. Let n be an odd positive integer.

Let f:R — R be defined by f(r) = r", 0 = R The range of f is R.



5. SEQUENCE

5.1. Real Sequence.

A mapping f : N — R is said to be a sequence in R, or a real sequence.
The f-images f(1), f(2), f(3),... ... are real numbers. The image of
the nth element, f(n), is said to be the nth element of the sequence f.

We shall be mainly concerned with real sequences and we shail use
the term ‘sequence’ to mean a ‘real sequence’.

A sequence f is generally denoted by the symbol (f(n)) or by the
symbol (f(n))n. Also the symbol (f(1),f(2),f(3),... ...) is used to

denote the sequence f.
The range of the real sequence (f(n)) is a subset of R, denoted by

the symbol {f(n) : n € N}.
The symbols like (), (vn), (zn), etc. shall also be used to denote a
sequence.

Examples.

1. Let f : N — R be defined by f(n) =n,n € N. Then f(1) =1, f(2) =
2.... ... The sequence is denoted by (n). It is also denoted by (n), or
by (1,2.3.... ...)

2. Let f: N — R be defined by f(n) =n* n € N. The sequence is (n?).
It is also denoted by (n?), or by (12,2232, ... ...).

3. Let f: N — R be defined by f(n) = nil,n € N. The sequence is
[ N . 1 2 3
(5. Tt s also denoted by (3 Jnor by (3,5, 9+ ...).

4. Let f:N » R be defined h.V,f(”) = (=1)",n € N. The sequence is
1)), It is also denoted by ((—=1)™)n orby (=1,1,-1,... ..). The
tange of the sequence 18 {-1,1}.

5. Let f 10 R be defined by f(n) = sinF n € N. The sequence 1s

| (. ...). The range of the sequence is {-1,0,1).

[ be defined by f(n) = 2 for all n ¢ N. The sequence is
V1t s called a constant sequence
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. and describe f(n 4
it is convenient 10 specify f(1 l)u
Sometimes 10 E
‘ | > 1
e of f(n) foralln | .
terms of [ ﬁm(’tionfdoﬁnod on N by f(1) V2 f(n+1)§

For example. the
< 1. is the sequence

(V2. \/é’\/Z \/ 2V 22,... "
\ 2f(n forn
5 2. Bounded Sequence-

\ real sequence (f (n))
real number G such that f(n)
hound of the sequence.

is said to be pounded above 'if thgre EXists,
"< G for alln € N G is said to be y

upper

is said to be bounded below if there exig,

A real sequence (f(n)) S foralln € N. g is said to be g ™

real number g such that f(n)
hound of the sequence. .
A real sequence (f(n)) is said to be a bounded sequence if there ey

real mumbers G. g such that g < f(n) < G for all n € N.

Therefore a real sequence is bounded if and only if it is bounded abg;
as well as bounded below. In this case, the range of the sequence is,

hounded set.

For a real sequence (f(n)) bounded above, the range of the sequeng
is a set bounded above and by the supremum property of R, the rang
set has the least upper bound, which is also called the least upper boun
f the sequence (f(n)) and is denoted by sup{f(n)}.

The least upper bound of a real sequence (f(n)) is a real number I
satisfying the following conditions :

1 fln) < M forall n € N,

1) for each pre-assiged positive . there exists a natural number!
such that f(k) > M — ¢,

By similar arguments, for a rea] sequence ( f(n)) bounded below, thet

st A greatest lower bound and it s denoted by inf{f(n)}
Ihe greatest lower |
: s 't bound of 4 reg] g
. sequence (f(n)) is a real numb
ving the following conditions : d Jisare

salisf

(
J = for all e N
for cach pre

~ASSIge( ifive
ih thay [(} ged positive ¢, the

N [
g re exists a natural numbe’
AL u (](H
J) nbhounde
'IIJ( ) N » g =0
al wouence ( f Ahove, we define sup{ f(n)}

(1)), y
") unbonunde lwluw‘ we define inl'{f(n)} = -0
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Examples. .
1. The sequence (;) is a bounded sequence

. 0 is the greatest -
pound and 1 is the least upper hound of the seq P eRicst tower

ience,
9. The sequence (n?) is bounded below and unt
sup{f(n)} = o0, inf{f(n)} = 1.

3. The sequence (—2n) is bounded above and unbounded below. Here
sup{f(n)} = =2,inf{f(n)} = —oc.

4. Let f(n) = (_1)"n_ n € N. The Sequence (f(n)) is unbounded above
and unbounded below. The sequence is (-1,2,-3.4.... |

Here sup{f(n)} = oo,inf{f(n)} = —x.

ounded above. Here

5.3. Limit of a sequence.

Let (f(n)) be a real sequence. A real number | is said to be a limit of
the sequence (f(n)) if corresponding to a pre-assigned positive . there
exists a natural number k (depending on €) such that

| f(n)—l|<eforalln>k
ie,l—e< f(n)<l+eforaln>k.

To be explicit, a real number [ is said to be a limit of the se
(f(n)) if for a pre-assigned positive ¢, there exists a natural nur
such that all elements of the sequence, excepting the first & — 1 at most
lie in the e- neighbourhood of 1.

v

Theorem 5.3.1. A sequence can have at most one limit.

Proof. If possible, let a sequence (f(n)) have two distinct limits /, and
lo where {; < .

Let € = %(lz —1;). Thene > 0and [} + € = [ —¢. Therefore
neighbourhoods (I} — €11 +¢€) and (I2 — €, 12 + €) are disjoint.

Since 1, is a limit of the sequence, for the chosen e, there exists a
natural number &, such that

li —e< f(n) <ly +eforalln >k
Since 1, is a limit of the sequence, for the same chosen ¢, there exists

-

a natural number ky such that
ly —e < f(n) <ly+eforalln >k,
Let k = max{ky, k2}.

Then l) — e < f(n) <l +eand by — e~ fin) <y

+eforalln >k
This cannot h;\l)p(‘ll since the m‘ighlmmhomls A\ (y.€) and N (42,¢€)
. ) . ;
are disjoint. Therefore our assumption that 'y = 1y is wrong

Heuce £, 1 and this proves the theorem
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. ;equence: e
5.4. Convergent =% o convergent sequence, if it hag,
: X

s said to be o
I aid to converge to [.

mee (f(n)
A real sequence (f( to et
R. In this case the sequence 15 5 1
) lim f(n) = [.or Jim f(n) =t
n—x

a divergent sequence,

Jimit [ €
We write

if it is not convergep;
A sequence is said to be ‘

Examples. )
1. The sequence (;1;) converges to 0.

Let us choose a positive €.

By Archimedean property of th
k such that 0 < % < ¢. This implies

It follows that | 1 — 0 |< e for all

e set R, there exists a natural numbg
0<%<eforalln2k.
n > k and this proves lim % =0,

2. The sequence (%’—1) converges to 1.

Let us choose a positive €.
|24l _ 1 |< e will hold if 5 <, ie., ifn> %

n?

Let k = [%] + 1. [For example, if € = .01 then k = 11; if € = .00
then k = 32].
Then k is a natural number and | n’H _ | |<eforalln > k.

n2

. . 2
This proves lim 3! = 1.

3. Let f(n) =2 for all n € N. The sequence is (2,2,2,... ...). We prow
that the sequence converges to 2.
Let us choose a positive e.

| f(n) =2 |< € holds for all n > 1.
Therefore lim f(n) = 2.

N ‘onstant s i
Note. A constant sequence is a convergent sequence

Th
leorem 5.4.1. A convergent sequence is bounded

Proof. Let (f(n )) be a convergent se

uence N
or this chosen ¢ th, quence and let [ be its limit. Let

that 1 -1<fn) <y 1 for all n ;1: exists a natural number & such
Let B = max{ (1), g -
‘ //(2) ..... -
ey (1), 1 (2), . /{;-; Vit
HED S () < B for all n e N ML

0
proves that t}
e sequence ( .
Corollary, J(n)) is a bounded «
Mary, Ay unhomnde o mded sequence.
s0q

nence j
5 Not convergent .

‘

;
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ote. A bounded sequence may not be a convergent sequence.
For example, the sequence ((—=1)") is a bounded sequence but the
nee does not converge to a limit.

N
seque

5.5. Limit theorems.

Theorem 5.5.1. Let (u,) and (v,) be two convergent sequences that
converge to u and v respectively.
Then (i) lim(u, +vp) =u+:
(ii) if c € R, lim(cu,) = cu;
(iii) lim(unvn) = uv;
(iv) lim(¥=) = ¥, provided (v,) is a sequence of non zero real
numbers and v # 0.
Proof. (i) To show that lim(u, + v,) = u + v, we need to establish that
for a pre-assigned positive € there exists a natural number k such that
| (un +vn) — (u+v) [<eforaln>k
Using triangle inequality, we have
| (tn +vn) — (u+v) [=] (un —u) + (va —v) |<|up —u|+ vy =11
Let € > 0. Since limu, = u, there exists a natural number &, such
that | u, —u |< § for all n > k.
Since lim v,, = v, there exists a natural number k such that
[ v —v|< 5 for all n > ks.
Let k = max{ky,ko}. Then | u, —u |< § and | v, — v |< § for all
2 2
n > k. It follows that | (u, +vn) — (u+v) [< e foralln > k.
Since € is arbitrary, lim(u, + vn) = u + v.
(ii) Let us assume ¢ # 0. When ¢ = 0 the theorem is obvious.
To show that lim cu, = cu, we need to establish that for a pre-assigned
positive € there exists a natural number £ such that
| cu, — cu |< e for all n > k.
We have | cu,, —cu |=| ¢ || un —u |
Let € > 0. Since limu, = u, there exists a natural number k such
that | u, —u |< r foralln > k.
It follows that | cu,, — cu |< € for all n > k.
Since € is arbitrary, lim(cun) = cu.
(iii? To show that lim(u,v,) = uv, we need to establish that for a pre-
assigned positive ¢ there exists a natural number & such that | w, v, -
W < € for all n > k.
We have | e, — we |=] wn(n =)+ v(u, — u)
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vl +] iLu:ﬂC"‘ it is pounded. Therefore they,

such that | n |< By for alln €N,

| “H 1\ I‘H
is a convergent s€

Since (tn)
real number B

exists a positive

Let B = max{Bi.| v 1}
: /uz‘)<B|zv,.—1']+Bluﬂ~u|.

Then | untn .
Let ¢ > 0. Since limtn = u and limvy =Y there exist natur
numbers ki and k2 such that
| u, —u|< 35 for all n > ky and | vn =¥ |<
€
Let k = max{k1.k2}. Then | un —u |< 55 and | v, — v |< 35 forq
1
n>k.
It follows that | unvn — w0 [< B.s5+ B33 foralln >k
or. | upvn — uv |< € for all n > k.

Since ¢ is arbitrary, lim(unvs) = U0

75 for all n >k,

(iv) First we prove that if lim v, = v, where (vy,) is a sequence of non-zer

real numbers and v # 0,lim1/v, =1 Jv.
Let a =1 |v|. Then a > 0. Since lim v, = v, there exists a naturl

number k, such that | v, —v [< o for all n > ky.
We have | [vn | = [v]|€ v —v|<aforalln >k
or, | v | —a <| v, |<|v|+a foralln > k.

Therefore | v, |> % |v| for alln > k.
1 1= v
- l= Iv!lt':ll < TvZF | vp —v | for all n > k.

Let € > 0. Sigge limv, = v, there exists a natural number ko such
that | v, —v [< %e for all n > k.

va4 k = max{ky.kz}. Then | ;- -1 |[<eforalln >k

Since € is arbitrary, lim L = 1 o

) Y Un v’

The proof of the th i

eorem is now completed b ideri
vergence of the product of tw y oqneidering thelle
0 sequences (u L
(un) and (vn ).

Therefore lim(% .
m(%e) = 1
('v.) hm(“nﬁ)Z’d%:%

Note. If ‘11“ ) ("n)~ (U'n)

be th
that converge . ree convergent sequen ]
ge to u, v, w ces of real numbers

respectively, then

1) hmw” + U, +
W) = w4y 4
w and

1 (
W) im0, o)

T he 1}
: weorem can |
! 1 be generaljse
nnber of conyergent e alised to the
= nees,

= uvw,

sum ¢ .
m and the product of a finit¢
Theore

5.5,
o n o 5.5.2, | (u,) he ,
IVELging vy o | hen the ! a (-()“V(n]»g(.

nt sequence
Mequence (fy,, () quence of real number
1

converges to |
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We have [ un| - [ul [< iy —ul.

proof- el
Let € > (0. Since limu, = u, there exists a natural number k such
that | un — ¥ |< € for all n > k.
[t follows that [|un|—|ul||<eforalln >k
Gince € 18 arbitrary, lim | u, [=| u|.

1. The converse of the theorem is not true. That is, if the sequence
|)is a convergent sequence, it does not necessarily imply that the
(un) is a convergent sequence.

Note
(| un

sequence
For example, let un = (—=1)". Then the sequence (|u,|) converges to

1 but the sequence (un) is a divergent sequence.

Theorem 5.5.3. Let (u,) be a convergent sequence of real numbers and

there exists a natural number m such that u, > 0 for all n. > m. Then

limun > 0-
Proof. Let limun, = and if possible let u < 0.
Let us choose a positive € such that u+ € <0.
Since lim u, = u, there exists a natural number k; such that
u—e<un<u+eforalln_>_k1.

Let k = max{ki,m}.

Then by hypothesis, un > 0 for
un<u+e<0fora,11n2k.

This is a contradiction. Therefore limu, > 0.
onvergent sequence of positive
= ﬁ then (un) isa

r all n > k and we have from above

Note 1. The theorem also says that a ¢
real numbers may converge to 0. For example, if un
convergent sequence of positive real numbers but limu, = 0.

Note 2. If (u,) be a convergent sequ
being a natural number), then limtn > 0.

ence and u, >0 foralln>m(m

Theorem 5.5.4. Let (un) and (v,) be two convergent sequences and
> v, foralln>m.

there exists a natural number m such that un
Then lim u, > limvn.

Proof. Let limu, = u,limv, =V and wy = Un

. or all
Then (w,) is a convergent sequence such that wn > 0 for all n > m
and limw, = u —v.

By the previous theorem. !
> limty

(—v >0

A .
Consequently, lim tn

{wo convergent sequences and u, > v, forall

Note. If (u,) and (vn) be

> . N
>, then limo, > it
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. sequence s . -
Then (wn) 18 2 convergent seq uch th 5. Prove that lim (Vn+1-yn)=o.
V- . n-—o0
Let wy Un n . p—r
A . d limwy, =1 ' . . 1
o >0 for alln > m an i, > i V- lim (,/n, +1- \/ﬁ) = lim —
¢ > 0and therefore i tn = n—00 N \/n+ 14 /n
. yoints in a closed lim w,v,. where u, — - 1 = 1
~ llary. If (x ) 1s a (‘()nV(‘l‘ff,(‘m h(‘qll(“l)(‘(‘/ Of lb and nooo here Un vn' Un = N+1s
Vo In >
Corollar) " and lima, = ¢, then € € [a, b]-
B

hounded interval [a. b] : s
impli imx je,a<cs0.
a<rn<b implies a < limxp <D, e .

is a convergent sequence of points in an open boundy lim ( 1,1 =+ 4 \/;;?;‘) -1

Il

So u
= 0, since limu, =0 and lim, = \Y)

00 n?+1 n‘+

Note. If (zn) . b,
interval (a.b) and liman = ¢ then C may not be in (a, )nce o 1 N 1

For example, the sequence (zin) isa convzrgent s:(}lautle o (0 lo)pen Let un = 727 T 72703 +ood
; ¢ it of the sequence does not belo , 1 . 1
interval (0.1). but the limi q We have n12+2 P an
Theorem 5.5.5. Sandwich theorem. Squeeze theorem. —3 < 7aa

Let (un). (tn), (wn) be three sequences of real numbers and there s 1 < -
natural number m such that u, < vn < Wn for all n > m. Therefore u\/ni-<+-n B f‘o/f;]]l o3
If lim u,, = limw, = [, then the sequence (vy) is convergent and limuv, = n S Unil =

: 1 1 2
l. Again, ==+ 73 >1‘/m .
1 1
n?+1 + n4+42 + n*+3 > n<+3

Proof. Let € > 0. It follows from the convergence of the sequences (un)
and (w,) that there exist natural numbers k; and kp such that

| up —1|< € for all n > kq and | w, — |< € for all n.> ky.

Let k3 = max{kl, kz}
Then ! — e <up, <l+eandl—e€<w, <l+eforall n > k;.

Let k = max{ks, m}.

n > 2.
Therefore u, > T for all n >

n n P > 2'

Thus T < Un <z for all n >
. . 1
But Jim s =1and Jim, ook =

?
+
S

By Sandwich theorem, limu, = 1.

Then ! — € < up < v, <w, <l+€foralln> k.

Consequently, | v, —{ |< ¢ for all n > k.

Thi <t ) . 5.6. Null uence.

This shows that the sequence (v,) is convergent and limv,, = . Defi o (
efinition. A sequence (un

This completes the proof.

) is said to be a null sequence if limu, = 0.

Theorem 5.6.1. If the sequence (u,) be a null sequence. then the

Note. | <
fun < v, < w, for all n >m and limu, = lmw I. then
n — = . oreelv
n ’ sequence (| uy, |) is a null sequence and conversely.

amuv, l.
Proof. Let ¢ > 0. Since limu, =0, there exists a natural number & such
1. 1 that | u, |< e for all n > k.
< Prove that | In?49 ‘ i s that
1 ]Jm] u”}"!!l As | | ™ l -0 l___l U | it follows

1 3.
This proves lim | u, [= 0

Worked Examples.
w, | =0 < e for all n > k.

"y

lim  #* jéntl i u
»x " 1 11 7
o where ¢ — .
" vy Ly = ¢ + 2 1 !
G " 3 n t w2 and Uy = 1+ al

3 and lin ", |

Y
Conversely, let lim | up |[=0-
Lot ¢ > (). There exists a natur .
[ u, | =0 |< e for alln >k That s, [
0

"

al number & such that

But iy, u,
< ¢ forall n > k.

Pherefore Jiyy 5%y 20y I
va n?y] iy Thi
o =3, Chis proves limu,

"
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q\l(’n(‘(‘-

(f(n)) is S2
- al
pumber G-

i to dwerge to oo if COfrf’Sp()nding t
, however 1arge: there exists a naturg]

5.7, Divergent 5¢

A real sequence
assigned positive
such that

f(n) >G

a pre-

pumber K -
for all m 2 that the sequence

lim f(n) = and also &y

In this case W€ write
£in)) tends to | |
| —oo if corresponding to

is said to diverge to ‘
there exists a natura|

bal S > T])
A real sequence (f(n) % however large,

a pre-é ssigned positive nW
sumber k such that
f(n) < _Gioralln >k
lim f(n) = —00 AN

beﬁnition. A real sequence (f (n)) is said to be a properly divergent

sequence if it either diverges to 00, OT diverges to —00.

mber

[ this case we write d also say that the sequence
7 1)) tends to —00©-

is unbounded above but

Theorem 5.7.1. A sequence diverging to 00

bounded below.

(f(n)) diverge to oo Then fo
positive number G there exists a natural number k such that f (k) >G.

Therefore there does not exist a real number B such that f(n) <B
holds for all 7 € N. In other words, (f(n)) is unbounded above.

Let G > 0. Then there exists a natural number k such that
f(n)>Gforalln>k.

Let b= min{f(1). f(2)...., f(k=1),G}. Then f(n) > b for all n € N
This proves that the sequence (f(n)) is bounded below.

Proof. Let a sequence

Note. A sequence W
0 quence unbounded above but bounded below may not diverge

For example. let i \ n)=
. T X -t us consider the seque n! ;
The soqumor (1 2L ) quence (f(n)) where f( ) (-1",

' cpdig )

The sequence W
‘ “u Tﬂf nee s unbounded above and bounded below. 0 being a lowe!
oound. The sequence does not di :

s not diverge to oo, b assi
. because for a pre-assign®

positive number (; t} number k such
ere does not exis
100 > G bolds o ol o Ist a natural number k suc that

Theorem 5.7.9
sorem 5.7.2. A sequence divero:
bounde A sequence 'JlV('l’g]“/| _ .

inded above g to —oc is unbounded below but

Proof left 1, the reade;

r each pre-assigned |

»
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Note- A sequence unbounded below but bounded abow .

1o — 00 ed above may not diverge
Deﬁnl'thl’lS. A bounded sequence that is not convergent is said
oscillatory sequence of finite oscillation rgent is said to be

An unbounded sequence that is not '
i : properly d e ‘
an oscillatory sequence of infinite oscillation. Y GivesgeIt 48 Saicyio be

an

An oscilla'tory sequence is therefore neither convergent nor properly
divergent. It is called an improperly divergent SCQU@TL(‘; properly

Examples.
1. The sequence (2") diverges to oc.

2. The sequence (—n?) diverges to —oc.

3. The s‘equence ((=1)™) is a bounded sequence, but not convergent. It
is an oscillatory sequence of finite oscillation. .

4. Th.e sequence ( ( —1)™n) is an unbounded sequence, and it is not prop-
erly divergent. It is an oscillatory sequence of infinite oscillation.

5.8. Some important limits.
1. limrm=0if|r|< L

Case 1. 7 = 0. In this case the sequence is (0,0,0,... ...).
The sequence converges to 0. That is, lim r® =0 when r = 0.

CaS$ 2.r7r#0and |r|< 1L

7 > 1, since [ 7 |< 1. Let I%I =a+1, where a > 0.

n_ 0= _ _ 1

|7 = 0=l =l "= e

We have (1 + a)" > na for all n € N. So|r*—0|< L foralln €N

Let € > 0. Then | " — 0 |< € holds if n > 2.

>L:t k=[L]+1 Thenkisa natural number and | r" —

n>k.

Since ¢ is arbitrary, limr" = 0.
=0if|r|< 1.

0 |< € for all

1 P R
Combining the cases, limr"

2. lima'" = 1 ifa > 0.

C .
ase 1. q = 1. In this case the sequence CoOnVerges to 1.
Cas
ase 2. ¢ > 1. Then a'/" > L. Let a" =1+ x, where r,, > 0.
= — ==
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i > 1ence. . |
w = Diverge nt seqt . oo
o . i« said to diverge 10 X it “‘"" ponding tq
\ real sequence C o powever large. there exists a naturg)
d positive pumber G
assigned e
her & SW that
. G for all 7 >k e
i « and also say that the sequence
< case we write lim f(n) é
TR S )
i —x 1 Spo
A sequence f(n)) 18 said to diverge tO xX if ('OTI:(’ ponding tg
b i y -ever large exists a nat
A positive pumber G. however Jarge. there ural
ber k such that
tin) < -G for alln > k.

b case we write lim f(n) = X and also say that the sequence
tends to —X |
Definition. A real sequence f(n)) is said to be a properly divergent

omence if it either diverges to . OT diverges to —¢.

Theorem 5.7.1. A sequence diverging to x is unbounded above but

inded below

Proof Let a sequence (f(n)) diverge to 3. Then for each pre-assigned
number G there exists a natural number k such that f(k) >G.

there does not exist a real number B such that f(n) £B

In other words. (f(n)) is unbounded above.

Therefore

yas lor all 7

v+ (0 5 (. Then there exists a natural number k such that
> G foralln > k.
[f11f(2). . f(k=1).G}. Then f(n) = b for allnel

Thi nroves that the . ;
This proves that the sequence (f(n)) is bounded below.

sce unbounded above but bounded below may not diverge

For example let us consider the sequence (f(n)) where f(n) = n(‘”".

sequence is (1.2 4
3 5 ..).
imhounded above ¢
— s sove and hounded helow. () being a lower
1) {oes not dive
somilive ‘Smnther €7 ther: ‘m, diverge to »c. because for a pn-—assigﬂ
s there does { ovict
) not exist a natural ll'lllll)('r k h’ll('ll lhﬂt

s Dowds dor all n > |

sound. The seqg

Theorem 5.7.2. A oo
P c Juence d)ve .
sounded above rging to ¢ is unhounded below but!

“1‘:‘,,’ left 1

the readey

v—'
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A sequence '”'l”"l“’l"’] below but bounde d
naed above mavy not

Note-

to — %
Definitions. A bounded sequence that

. lla :\ rl"“ convergent 1t

an 08¢ Wlatory sequence of finite oscillatior o

tion
An unbounded sequence that is not properly d
10 ;;p:')‘ riv divergent

an oscillatory sequence of infimite oscillatior

S said t

An oscillatory sequence is therefore neit}
re neither convergent nor prop
proper

divergent. [t is called an LMprope rly dive rgent sequence

Examples.
1. The sequence (2") diverges to x.
2. The sequence | —n?) diverges to —x

3. The sequence ((=1)") is a bounded sequence. but not convergent
. ) i but not convergen
is an oscillatory sequence of finite oscillatior

4. The sequence ((—1)"n) is an unbounded sequence. and it is not proj

5.8. Some important limits.
1. limr"=0if r <L

Case 1. r = (). In this case the sequence is (0.0.0.
The sequence converges to 0. That is. limr” =0 when r =0

Case 2. r #0and r <1
L |
L > 1 since |r|< 1. Let - =a~1 where a >0
[r =0 =" |=|r "= ==

We have (1 +a)" > na foralln =1

rm—0|< ¢ holdsifn

Let € > 0. Then

w1 . .
Let k= [L]+ 1. Then kisa natural number and ( ¢ for
no e
Since ¢ is arbitrary, hmr" = U.
—0if | r <1

( ombining the cases, lim r’

2.1 ln e
limatr Lifa -0
In this case the sequence converges to 1

. 1. Thena' ™ » 1. Let al 1

Case 1. 4 |

Case 2
ase 2. a W here
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yorked Examples.
oICe: .~ strictly increasi v prove that lim(1 4 Z’” )t = e
511 Gubseque nd \"”‘ he a ) T asing Sequ, 1. 1 |
R quence S, < ) Tie no, 2 )
» be o roal seqt! PR < Ty 1en the N‘qu,.,‘ Let tn (L+ )" vn = (14 an ) and w, = (14 z’ )" for all n
et Ll el e 2 - RO snee (g, ). . Ity . " e co o 2n
coaural pumbers: 3 [ qu”“‘ of the s¢ quet ( n) The (~](.m‘_m\ ( The seque ncee (I/.,,) Is a convergent sequence and limu, — ¢
0 Ll L subst . S of
\\'Mulu a et ) S ‘ . v 4
o e (tr, )0 1€ 7 Since vp = t2n for all n € H, the sequence (1,,) is a subsequence of
Ay subsequence L ool patural numbers such that <, e sequence (u,) and therefore lim v, — ¢
N he a seque . ) e ! . o
W s NDbea seqt ol sequence. The ) : ) I ' ' )
Lot m: N7 N R be a real seq n the Compq, Wn = Vv, for all n € N. Therefore limw,, = lim /v, = /.
cand st

S R 18 S ] > ¢ .\'Hh.\'(‘qll( nce ()f hf\ rea se |
me U S \ Ji b l»llld to h( a t : " “
mapp: g uor -4 et

I”’]( \‘h‘]lll‘m N Of Ih(‘ Slll)ﬁ( qlll nee ue l len

~ that the sequence ((=1)") is diverge
pare Uy tryy e Uy 2. Prov¢ that t 1 e ((=1)") is divergent.

Let un = (-1)”~ Up = Up,Wpn = Uzp -
Then (v,) is the subsequence (1.1.1,... ... ) and limv, = 1
Examples. (wy) is the subsequence (—1,-1,—1,... ... ) and limw, = - L.

o forall n €N
1. Let u, = »and o = on for all n €

Then (ty, Jn = {u2: W Uereee } Since two different subsequences of the sequence (u,,) converge to two
ry/n “ . ) o, . .
-{! 11 ... }is a subsequence of (%) different limits, the sequence (uy) is divergent.
SR
9. Lot uy = % and r,, = 2n = 1 for alln € N. Theorem 5.11.2. If the subsequences (uan)n and (u2,—-1), of a sequence
Then (i, )p = (U Ugs Usee e oo } (1,) converge to the same limit {, then the sequence (u,) is convergent
11 c o enhs 1 .
={L§3. ..} is a subsequence of (). and lima, = L.
3. Let u, = (-1)" and r, = 2n for all n € N. Proof. Let us choose € > 0. Since limuy, = [, there exists a natural
Then (u, )y = (U9 UgsUgs v+ -+ ) number &y such that | ug, — 1 |< € for all n > k.
=(LL1......) is a subsequence of ((—1)"). Since lim us,_1 = [, there exists a natural number k» such that

p Usn—1 — | |< € for all n > ka.
4. Letu, =1+1/nand r, = n? for all n € N. | uzn-1 | =&

—(1+ 1 ; Let k = e1, ko) n k is @ ¢ >
Then (4, ), = (1 1.1+2—_).1+3%. ...... } is a subsequence 0f(1+% k.1 max{f1 Kz}, Then v is 2 mahiral Tmber Sndor eSS
- . —e<u2n<l+fandl—e<u2n_1<l+e.
(‘u‘i?:e(l;ll S.1L.1. If a sequence (u,,) converges to [, then every sube That is, | — € < u,, < [+ € foralln>2k—1.
JUeTICe 0! als OTrgoc ? . . . .
tn ) also converges to |. As 2k — 1 is a natural number, it follows that limu, =[.

Proof. Let (r ;

) n) beas L .
Then u, ¢ @ strictly increasing sequence of natural numbers Note 1. If two subsequences of a sequence (uy) converge to the same

Jn 15 subseq .
imit {, the sequence (u,) may not be convergent.

Let € > 0. Since lil:(:we—olf tile Sequf: nce (un).
<ol y L:t kere exists a natural number  such ¥ For example, let u, = sin .
?‘,” ,r i a strictly il;(‘re.asin . e The subsequence (ugn—7)n 1S (S 11 sin 2% sin r ...
. 4:1‘4,”?71 mumber k; gy, thib:qu;r;fc; of natural numbers, th® The subsequence (ugn—5)n 15 (S %’I.Sili U7 sin 497 ..0).
B, = S U <l foy; Al orall n > ko: o Both these subsequences converge to —5. But the sequence (u,) is
" n > kg. This shows not convergent.

Note. Ity

1616 oy 2. If three subs s (u wan—_1)n. (Uszn—o)n of a sequence
a Sequence S0, iffore e subsequences (uzn)n. (U3n V. (Usn—2)n of a sequence (u,,)

U, | sueh nt syhe of conver . L. . . S R B
i, they 1 e thay (,, ' s‘l'b“(’qll(‘ncos (uy, )n and (uk")n [ ge to the same limit [, then (uy) is convergent and limu, =1
| 1€ Seqe "o Jnoand (q n «Torell )
Ifa Seqence JUence | 1) is o ¢ Lk, )n converge to two diffe If & subsequences (kn)n, (tkn—1)n+ (Ukn ne o (Ukn—xs1)n Of a
AUNE ONVeroe se L/n:
/ lvergent. Cquence (u,) converge to the same limit /. then (u,) converges to [.

145 4 diy,
Tgent ) . it
thsequence, then (up) i diverg?

e L
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is a monotone subseq,,
) 11«.119-“13"") AUence of
) spee (U1
.\\lh“‘q"l
)
(Un

(1", The sed
v ) has 10 peak.

The ) .
s . 141610
{he sequen® gence is (1 2,5:.455%7 )

2. Let v mn . 3
Here the sequence (Un) 1) gince w18 not a ;z)eak, there is
et ere sg = 2.
is not & poa> . such that ts2 ~ Usy - H 2
r s3> %17

: er s
patural numbe al number s3 > s, such thay

S . S I
not & pe&k t,hele 1S & n&t 1
18

Since Us; 4
K3 = 4.
Ugq > Usy- H(‘r(’ .

\slm]alagl 84— 15—8,...

B 1 meuts S 6,8

v Ug,s U ) ncreasing s | )
[hus {111.’1[2«“4‘ 16y U8y -+ s a IIlOIlot() 1e 1

the sequence \Un ).

5.12. Subsequential limit.

Let (u,) be a real sequence. A
quential limit of the sequence (un)
that converges to [.

real number [ is said to be a suly,
if there exists a subsequence of (1)

Theorem 5.12.1. A real number [ is a subsequential limit of a sequene
u,) if and only if every neighbourhood of I contains infinitely man
elements of the sequence (un).

Proof. Let | be a subsequential limit of the sequence (uy). Then thee
exists a subsequence (u,, ), such that lim w,,k =1I.
n—o0

‘ Let us choose a positive e. Then there exists a natural number k sub
that [ — € <u, <l+eforalln> k.

Therefore [ — € < u, < I+ ¢ for infinitely many values of n.

{ Since ¢ is arbitrary, every neighbourhood of | contains infinite numt
of elements of the sequence (un)

C Onverse,

ly, . ;
v, let the sequence (un) be such that for each pre—tasSlgﬂ‘fd

positive ¢ the e-neight,
N Hour . . .
the sequence. g hood of I contains infinitely many elementst

Let € = 1. The

. . l_
Therefore the get Srll ! {'l '( Un <141 for infinitely many values of 1
4 1By the wel) orderi’;' Ll<u, < l+1} is an infinite subset Oflh:
Therefore | _ ) _ ipr‘j’l‘fiyl of the set N, S, has a least elem®’
2 Then | 1 }/ '

‘i Mn <1+ 1 for infinitely many val
1TC Gyt < U, < l+ %} is an inﬁl’lite su

2
4 4 Natyrgy) .
} ! number ro(> ry) in S2 suc!

‘

say 1

Lat o
T heref

e the 4

AN . e the pet Sy
ali] ” -
e 1)

u,, < |

ues ¢
.

th!

" il

SEQUENCE 1

=1

Continuing thus, we obtain a strictly increasing sequence of natiral
pumbers (r1,72, 780~ - ) such that { - % <u, <l+ :, for all n € TN,

By gandwich theorem, limu, =

In other words the subsequence (u, ), converges to I.

That is, [ is & subsequential limit of the sequence (u,,).

Note. The limit of a sequence, if it exists, is also a subsequential lirnit
of the sequence.

Theorem 5.12.2. Bolzano-Weierstrass theorem.

Every bounded sequence of real numbers has a convergent subse-
quence.

Proof. Let (un) be a bounded sequence. Then there is a closed and
bounded interval, say I = [a,b], such that u,, € I for every n € N.

Let ¢ = %2 and I’ = [a,c],I” = [c,b]. Then at least one of the
intervals I’ and I” contains infinitely many elements of (u,).

Let I; = [a1,b1] be such an interval. Then I} C I and | I, | = the
length of the interval = 1(b — a).

Let ¢; = 91;’—1’1 and I{ = [a1,¢1],I{ = [c1,b1]. Then at least one of
the intervals I{ and I{ contains infinitely many elements of (u,). Let
I, = [az, bs] be such an interval.

Then I C I; and | I |= % | Iy |.

Continuing thus, we obtain a sequence of closed and bounded intervals
(I) such that

(i) Iny1 C I, for all n € N;

(ii) | In |= 2 (b — a) and therefore lim | I, |=0; and
(iii) each I,, contains infinitely many elements of (u,).

By Cantor’s theorem on nested intervals, there exists a unique point
@such that o € 3 I,.
n=1

We prove that « is a subsequential limit of the sequence (u,
Let us choose € > 0. There exists a natural number & such that
2‘< '5%% <. Thatis, | I |< e
ho()\(lll(lf:“a € Iy and | Iy, |< €, Ii is entirely ("l?ll[‘(\l“(‘\i in the. nexghbugr-
i“ﬁnitoly HG’, « + €) and consequently, the e-neighbourhood of a contains
Y many elements of (un).
Since ¢ iy

el arbitrary, each neighbourhood of a contains infinitely many
““('nts of ( 8 \

uy,). Therefore a is a subsequential limit of (u,).

k
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and lim u, + 7=
| . ]im (1/” { Uu) ¢ n +llm "n N
 lim U'n
Jim tn
o {his cast

»d sequences
) and (vn) pe bounde d sequences ang u,
ot (Un) €
r13.9. 1
m 5.1 w. Then

Theore I

(0 fora

)

> Jim (tn-Un

Jim it 2 Un

< Tim (ttn-Un)-

Jim n
is a bot

Jim tn inded sequence. Let lim ¢, - l

;) The sequenc® (Un 1 0 ]‘

);‘D.

Do |
Proo

. Tim (tnTn Y
11z = uv.ll‘n/lelz(“n 1)
114

>0forallneN, ¢

\ ; ded sequence and un y ther
Un »r‘zalln:ll::nhm, B, such that un, < Bi for alln € N,

dv, >0foraln €N, lo>0.

}. Then tnUn — lly < B(un —l2) + B(uy, -1y

hm Uy
Uy Uy
Sinee |

exists a positive

Since lim Un

Let B = max {By.l2

Let € > 0.

Since lim u, =l

¢ forall m > ky.
I,. there exists a natural number k2 such that v, <

= [, an

{here exists a natural number &y such that v, ¢

Since lim 1, =
, + ¢ for all n 2 ky.

Let k = max {k;. ky}. Thenu, < Iy +eand v <la+e for alln >+

Therefore ugvy, — i1y < B.5g + B.% for all n > k.

That is. u, vy, < ljly + ¢ for all n > k.

Since ¢ is arbitrary, every subsequential limit of the sequence (unt|
15 less than or equal to [)l,.

Hence lim (u,.v,) < 1

<Ly, ie., lim (Un.vy) < lim Up.im v,

n

proof left to the reader,

5.14. Cauchy criterjop,

)

We discussed sever:
o \:u;il] methods of establishing convergence of ared
0] > 5 : Lo
¢ methods, a prior knowledge of the limit*

VEr 4 sequence |
Fwithout gy ,“ nee js monotone, the convergence .
i Vpre-conceived Jipig

o of establig) .
howledge of itg ]Jl“j

In mos

wessary. If howe

7 |
Py Y

Fequire ayy not

Mg convergence of a sequence does
L, nor .- . Lo I
noy (]()(l‘g it require the .s‘cqll(?““ 0

WOLUN 1
Ihe i
( W ethod iy v, POowi
of 1 v POwe
A 1 11504 lf|1|

as 0t is ¢ il
i I8 concerned only with the eleme!

‘

SEQUENC

Theore™

A necessary and sufficient condition for the convergence of i v

(l/n’
m 3.‘,|1(’]l

proof. Let (u,) be convergent and limu, — [ Then for a pre
exists a natural number m such that

]

that I Uppp — Un | <€ for all n zmoand forp = 1.2.3

Jositive € there

I [ up —1]< 5 foralln>m,

Therefore | tn+p — [<§forallnzmandp=1273

NOW !un+P_lt71 I S 'un+p_l|*i“n'/
< %-F% foralln > mand p =1 2"

That is, | Un+p — Un |<eforalln >mand p=1.23. ..
This proves that the condition is necessary.

We now prove that the sequence (uy) is convergent under the s
condition. First we prove that the sequence (u,) is bounded.

Let € = 1. Then there exists a natural number k such that

| Untp — Un |[< 1foralln>kandp=12.3

Therefore | ug4p — uk [< 1forp=12.3.... ...
or, up — 1 < Upgp < ug + 1 forp=1.23.... ...
Let B = max{uy,uz, ... Uk, s + 1}.b = min{u . u. ... Ug. !

Then b < u, < B for all n € N, showing that (u,) is a bounded sequence.

By Bolzano-Weierstrass theorem, the sequence (u,,) has a conve
subsequence. Let [ be the limit of that subsequence. Then [ i
quential limit of (up,).

Let € > 0. Then by the given condition, there exists a natura
m such that | up4p — un [< 5 forall n > mand p=1.2.

Taking m = n, it follows that
I Um++p — Um |< i for pP= 1.2.3.

Since [ is a subsequential limit of (). each e-neigh
contains infinite number of elements of (u, ). Therefore there
natural number ¢ > m such that | u, - Li< g

As ¢ > m, it follows from (i) that [y =t~

L | ' -

l (lmfp -1 'S! Upp+p — Um ’ FolUm Uy Ty

e e Cforp= 12,3,

. i <gtita for p ‘l‘

Lherefore | w, —1]< € tor alln >m 1

Since ¢ is arbitrary, the sequence (t, ) converges to
In other \\'Ol'\l»\} the sequence (u J) s a convergent sequence

”li.\‘ ('““llllt‘lt‘h the l'l‘\mt‘

) 5.14.1. Cauchy’s general principle of convergence.

is that for a pre-assigned positive ¢ there exists a natural number

DOUT NOOC
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o lled the “C
o is called the “Cauch
od in the theorem Y congy
“he \md\““" R NCe- .

Note. The o of a sequ¢ ont if and only if
o for convergenc ! (un) 18 convergent if a1 y il the Cﬂuch!f
won \'(‘qll(‘l“( n

Therefore & &
atished.
condition 18 satl

. vod Examples: : ence to prove th
B EMlm'p*om‘ml prim‘mlo of converg p i
T g N ‘ S L
1. Use Cauchy ® ¢ "
ence (1) 1 convergent: i %
) T Let pbea natural number
Let tn = na1° =~

n+p_
Then tin+p = nsp+l’
ntp Ao |
Uy, = | ntptl n+1

U 49

= [iptD(ntl) .
TLlp< é for all p, sincezbg <1 forall p.

n+

N

< ¢ holds for n > %

Let € > 0. Then %
natural number and | Unyp — Uy [<¢

Let m =1+ 1 Thenmisa
foralln>mand p= 1,2,3,... e

This proves that the sequence Un is convergent.

2. Use Cauchy’s general principle of convergence to prove that the s
quence (uy) where u, = 1+ 3+ 5+ + 1 is not convergent.

Let p be a natural number.

e L 1 1
Un+p un\—m+m+"'+n—+p~
Let us choose n =m and p = m.
Then | ugm —u = L1 4 1 L
2m '"| m+1+m+2+'“+ﬁ

\%

1
%—m + o=t Elﬁ
5.
If we ¢ v 1
" (uhqu ( fui then no natural number k can be found such that
ln+p nl<ew
’ will'hold for all n > k and for every natural number

This shows that Caych

¢ 1t : .
the sequence (4 ¥ condition is not satisfied by the sequence and

n) 18 not convergent

Cauchy sequence,
Definitio,

01
e

A sequence ()
s

Ay ! 1S sai ,
e positive | there said to he g Cauchy sequence if ford

Xists 4 e .,
T 4 Natural number k such that
Replacing 1, | n 1< e for g)) mn > k
( ’ Non oy =
an be cgiivale P where 4, . i
{hvaleg |, Bt s /! 1, 2, 3,... ... the ahove ('0]1(11“0"
1
Sy

ol “hand p=1,2,3,.00

‘

s
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.14.2. A convergent sequence i .
Theorem 5 gent sequence is a4 (ane hy sequence.

[’r()”f' Let (un) be a convergent sequence and let lim 1 [
For a pro—asmgned positive € there exists a natural number k such
. N |
that | tn —1|< § foralln >k
If m,n be natural numbers > k. then
€
| um —11< 3 and | u, - |< £.

NOW|Um'—uﬂ| < |um'H+Il~lt"
< s+ 5forallmn >k
That is, | %m — Un |< € for all m,n > k.
This proves that the sequence (u,) is a Cauchy sequence.

Theorem 5.14.3. A Cauchy sequence of real numbers is convergent.

Proof. Let (un) be a Cauchy sequence. First we prove that the sequence
(un) 18 bounded.
Let € = 1. Then there exists a natural number k such that
| Um — un |[< 1 forallm,n > k.
Therefore | ux — un |< 1 foralln > k.
or, uk—1<un<uk+1foralln2k.

Let B = max{ul,m, co Uk—1. Uk 1}
b = min{uy, u2, ..., Uk-1, Uk = 1}.
Then b < u, < B for all n € N and this proves that the sequence
(un) is bounded.
By Bolzano-Weierstrass theorem, (un) has a convergent subsequence.
Let [ be the limit of that convergent subsequence. Then | is a subse-
quential limit of the sequence (uz)-

We now prove that the sequence (un) converges to [.
Let us choose ¢ > 0. There exists a natural number & such that

| m — Un |< § forallm.n >k ... ..

Since { is a subsequential limit of (un), there exists a natural number

4> k such that | uq — 1< 5

Since g > k, from (i) | ug — tn |< § foralln > k.

lun =1 = Jup—ug|+lug—1!
< f4Sforalln> k.
That is, | w, — 1< ¢ for all n > &
This lmplies limw,, = I. In other words, the sequence (4, ) Is conver-
gent and the theorem is done.

Definition. A subset S of the set Ris sald to be complete if every

Citehy sequence in S converges o a pomtan.s
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elf 18 complete. The set Q jg X
0t

o (‘r«l:ll\lisll it

) defined by LA ug = 1.‘11_!13\

give her® a

. the seq!

’ ence (Un
s consie
0 14142

RS n 4 1 dig

The first

8 decimal expansion of V2. This §1
0

its In th
clements 1y, g of the seque,
3

{hen the
| places. So up
o natural number & such th,

o1 .
”ql <o S 1oF <E

g €N and p <@ ! | ta of
o for at Jast first P ¢ q a5
it 101 ¢ .
hoose ¢ > 0. Then there 18

t us CIit 4 .
Therefore for all p.g >k [y,
. W oo .
is a Cauchy sequence in Q. By

| number.

t
ence (Un)
9 an irrationa

Ly

ws that the sequ
| converges 0\
Q is not complete.

Iv:“,\ \}\\

he sequence (Us

srefore the set

I he
1

Worked Examples (continued).
1) is a Cauchy sequence.

Prove that the sequence (5

3.1
Let u, = L. Lete>0. There is a natural number k such that % <l
Ther IS R 1.1
Ihen Um =% 17im n = m __n
< e ifmn>k

This proves that the sequence (uy) is a Cauchy sequence.

4. Prove that the sequence ((—1)") is not a Cauchy sequence.

Let u, -1)". Then
= (=)= (-1 .
=0 ?f m and n are both odd or both even,
= 2ifone of m.n is odd and the other is even.
¢t s choose ¢ = 1 Then it is not possible to find a natural numbe

such that |, —u, <€ for all m,n > k.

Hence s not a C
s not a Cauchy sequence
5. t .
e 1he sequence
juen i, ) where —
e il, here uy = 0,uy = 1 and
n)loralln >~ 1, is a (¢
~ 1. is a Cauchy sequence
2\ Uy, T U 1
) — U = _1
- T n+1 Q(11/x+l = It”)
2 ' Unyy —uy, | for ¢
o n forall n e N,
Insg — U I
y p 2 Uy L = 4
, ) ¥ 1 Ly |= 22 I Uy — “""'
! Then | 4
" iy,
"
- Uy oy | 4
IECTRS BT
(byn- i
7/

yn

et €

o = e Hence [ = un [< ¢ forall mn &
‘
SeC)1E

[his proves that the sequence (u,) is a Canch:
¢ alt iy

6. Prove that the sequence (uy) satisfying the conditior
whers

for all n € M.

Un+1 ;(, c
ence.

| un+2 Upep — Up

Cauchy seqit

Up+2 — Un+l | C|Ups+] — Up

c“ | up — Un-y

IAIAIA A

& Ug — U

Let m > 1.
Then | Um — Un | Uy — Upn—1
)(",,v.-, -2 o

¥

IAIA

uz — uj

up | —

Il

[ ug —

1—c Us — Uy

Let € > 0. Since 0 < ¢ < 1. the sequence ("~
sequence. Therefore there exists a natura

n-1 . :
€ Juy—up [<elor all n > k.

It follows that | um — tn <€ for all m.n >

the sequence (up) is a Cauchy sequence.

) defined by u) = <

Find lim u,

7. Prove that the sequence (U
for all n € N. is a Cauchy sequence.

Unt2 = Un+1] = 102
uy = 3.u, >3 for all n >
Therefore |up-2 —Un+11 < §ltn-

example, (u,) is a Cauchy sequence and

sequence.
Let [ be the limit of the sequencs
all n ¢

Lhis gives |

M. Proceeding to lmit as s XL W

L3+ 413

the sequence is pOsitive

Note. The limit of the sequete vaill 4
fraction 3 1oL [he successive rgents
action are 3.3 ¢ i

| number k such ¢

s

. 0. Then there exists a natural mumber b such that

1¢

i

iy
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Jimits-
) rems 0N .
~auchy's the° and limu, =
e 1. Let (un) be @ sequence n =L Th
5.15.1. Y
Theorem *
lim wiwat U8 = l.
= 0. .o
proof. Case 1- l (nvorg(‘"t sequence it is bounded. Therefore there
1 co

)is a

Since (Un h that | Un |< B for all n € N.

suc
positive real number B

_ (. there exists & natural number k; g

exists a
- 0. Since lim tin

< & foralln2 kr.
utuzt:

AUk -1
| B
n
ot |u
uy 4‘1127f,,f1ﬂ:lfll + ||Uk |+|uk :11|+ l "'I

Let €

that | un w +HUk +1+...+unl
n

<

n
B(ki-1) 4 n=hatl £ for all n > k1
n

Bhy 4 § for all n > k.
_ 0. there exists a natural number ko such that B_:x <4

Since lim i
for all n > ka.

Let k = max{ky,kz}. Then |2Lﬂ‘2;1ﬁﬂ‘k|< e for all n > k.

" H o pr—
This proves that lim “T——=2 tugddtin _
I n

Case 2. [ # 0
Let v, = u, — . Then limv, = 0.
wtugtotuy _vtvateton
n .

n
By case 1, lim L:x%n = 0. Therefore lim“‘+”2:"+“ 1L

Now

T'his completes the proof.

Note. The converse of the theorem is not true.
II;'-! nslrolmdvr the sequence (u,), where u,, = (—1)"
wen lim 1Tt tu, 0 '
| ) lim : = 0, but the sequence (u,) is not converget*
Corollary. If Jiy Uy,

! /
b Yuyuy oy, =

I where u,, > 0 for all n and [ # 0, then

Since each Uy, 18 POSiti i
positive and Jim up = [ > 0, the sequence (logte

converges w log | by the ()
Therefore lim % u Hlog :‘E’)llm'y of 4 of Art 5.8
Yz tlog u,

n =log .
Un) = log|.

]
1 1
Volow V'““ 1
litg ./y“
MUy ...y
slUp) =,

Worked l',nunphm

Or i oy g
. (g
Viuju,

1

Prove 14 at lig Lo
! H

, ‘ (y

V

SEQUENCE

l T . .
Let Un = I'hen lim o, =0

s s 1+44
By (tauchy’s theorem, lim ~~4 - “»

" 14+V2+ V34 -+ Un
9. Prove that lim —*——"‘%—W‘L =1,

— {/n. Then limu, = 1.

Let un e
. ' 1+VZ+ Y34 s Un
By Cauchy's theorem, lim fei.d Py
Theorem 5.15.2. Let (u,) be a real sequence such that u,

n € N and lim tntl = |(#0). Then lim /u, =1

= — Y2 g, =Y ... ¢y = Yu
Proof. Let vy = UL, V2 = AU = g Un = R

Then v, > 0 for all n € N and limv, =1 >0

This implies lim log v, = log!.

logvy+logug+--+logva _ 1547
n et

4

By the first theorem, lim

or, limlog {/(vivz ... v,) = logl.
It follows that lim {‘/@11'2 ..v,) =1 That is, lim § T
Theorem 5.15.3. Let (un) be a real sequence such that v,

n e N and lim %2+ = [ (finite or infinite). Then lim g%

Proof. Case 1. 0 <1 < c.
Let us choose ¢ > 0 such that

exists a natural number k such that s = 3

| —¢ > 0. Since lim =~

J—f<ist g+ forally

Thenlv§<——“""<l+f;

Uk 2
€ Uk+2 €
I-g <2 <i+s

-5 <t <t

2 Un+1

We have (I — %)"*‘V < < (l+5)" k for all n > &

el n N J & A
or, ([ - 5)".B < up < A(+5) Cwhere 4 = 77T : :
o € =~ L 2 €

or, ([ - £)B» <u) < AR+ 5)

Since A > 0, lim A% = 1. Since B >0.lm B* =1

Since lim A% ([ + §) = | + §. there exst3 8 natural number &
that 1l U+ 5)<l+e for all n ™ s ‘

rural numbe

Since lim B« (-3 l
that Ba(l — §) > 1 — ¢ forall

Let kg max{Ay As Kol

Fherefore lim w;

169

- 0 for all
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a natural pumber k such that
{s ¢

\l
eare OXIS
) lh(“ unt) & £ f()l flll ” k

()« Un 2 € i oo ()<‘—”‘- C
e "2.04 Uk42 o~ 2 - L

_ ] ) Uk 41
1 h(\rp(m‘(‘ ( Uk

Case 2- |
Let € > {

ayn-k for all n > k
(3)

(4}71
n,“\“” xi‘l 2
] < \1( )" where \—“k( ) >0

n <

u
We have 0<
u

or. 0 < Un
1 1
or. 0 < un < An g

\xO hm\' =L

\IH(‘(
=¢ thme ex

Since lim Ar
An L <efor all n 2 Al.

1
{k,ky}. Then 0<ur <eforalln> k.

ists a natural number k; such that

Let kg = max
Therefore limuy; = 0. :
i
Case 3. lim == = o¢. ‘

Let us choose G > 0. There exists a natural number k such tht |
e >G+1foralln>k.

k+ Uk

Therefore “= > G+1,ﬁ >G4,

We have 2 > (G+1)"~* for all n > k

or. Un > (G +1)" where p =

J—(Gil)k >0

or, un > pn (G+1)

Since y > OAlimp? =1

0 li 1

Since lim (G + 1) = G 4 1, there exists a natural number k; sub
that 47 (G +1) > G for all n>k1

Let ko = max{k ky}.

Then u,’; > G for all n > k.
herefore |

im u, =,

This completes the proof

Note. The copye 1se of the the

orem is not true. To establish this, let

Where 3+
212)12h(r(" (l for all n € N.
\/"u

n= 1. siy
But iy “nss doe 18 ]lm(u‘h
5 101 exisg

onsider the sequeye (u
The sequence ig (
Here Jiyy,

1
WMo, : i
¥ =1 and lim(ug, )@ 71 = L

Theorey, 5.15.4, |
s A
h 4 u,,) he )
’ a1

. M
| al ¢ quence such that u, >0 for
Iy

w, < limp
‘\/u“ «

e .

liny 1ty < iy et
" :

"
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Let im=ttt = A, lim™2td — ye oo ;

[77(,(;f 4 Uy u, A AL M i Yu /,'
iy,

e first prove 4 <A

case 1. Let A" = o0, Then p* < A* trivially,
Case 2. Let ' be finite.
u

oose € > 0. il g
Let us cho Since lim 2l = )

, there exists a natural

”Y!‘
qumber k such that <A +eforaln >k
Uk 41 * Uk42 * "
Then 522 <X+ 022N e

S0y < Uk(A"+€)"7 kfor all n > k.
Hence for all n > k,u, < A(N* + €)™ where 4 = Tt > 0)
Therefore ¥/un < AY™X* +¢) for all n > k.

Consequently, im /i, < lim AV"()\* +¢)

= A" + € since lim A" = 1.
Since € is arbitrary, lim {/u, <A ie., p* <A
In a similar manner we can prove A, < ..

Also the inequality p. < p* follows from the property of the limit
inferior and the limit superior of a sequence.

This completes the proof.

Un+1

Note. If u,, > 0 for all n and lim “2=* exists, then it follows from the

theorem that lim {/u, also exists.

Worked Examples (continued).

3. Prove that lim {/n = 1.
Let u, = n. Then u, > 0 for all n € N and lim 1‘“— =1>0
It follows that from the theorem that lim {/n = 1.

4. Prove that lim & "') i %

Let w, 0 for all n € N and lim “—‘— =150,

= ”% Then u, >

lim 2 =1

X — 1
It follows from the theorem that lim {/u, = Z.1e.

5 5 1/n
5. Prove that lim i('—"mtf—j—kﬂl” =4,

Lot W, = D@20 They g, >0 for all n € N and hm == =
”vl =
lim 22 +1) |

i
RS (HT)H"“;\O

It follows from the theorem that linn §



6. SERIES

—

6.1. Infinite Series.

1) be a sequence. Then the sequence (sn) defined by

S = U182 = Uy + U9, 83 = U 4+ ug +ug, - o

< represented by the symbol uy +up +uz + -+ -+ , which is said to be
anite series (or a series) generated by the sequence (uy).

o0
The series is denoted by ¥ uy or by Yu,. up is said to be the nth
n=1

«erm of the series.
The elements of the sequence (sn) are called the partial sums of the
eries Yu, and the sequence (s,) is called the sequence of partial sums

f the series Yuy,.

If u,) be a real sequence, then Xun is a series of real numbers.

We shall be mainly concerned with the series of real numbers.

The infinite series Yun is said to be convergent or divergent according

s the sequence (s,,) is convergent oOr divergent.

is convergent with lim s, = s, the
If. however, lim s, = 0o (or —00), then the

If the sequence (sn) n s is said to
ve the sum of the series Yun.
sries Yy, is said to diverge to 0o (O —00).

Examples.

. . 1 1 .
L Let us consider the series TLZ +33tsat

L#t the series be %l u,,. Then u, = ,T(ﬁl*)
e

LM 8, = U + Uy +,.,+“”_

Then s, = AlA) + 2%,3_ 4o T

!; .

I 1
(1 .‘.,) + (5
]

—

. TR ) .
d iy s, — 1. Hence the series Yu,, is convergent and the sum of the

et T

.

2. Let us consider the series 1+ 2 +3 4+

.
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N l)
7)(7,} , .
n. Thent on Y0 and limg,
PRE
1+ 4
1 ) R t'
. Lo series 18 Jivergen
Hoene {1 | | ]_ o
ceenies 1H2 T2
3. Let us consider the ]
{
) 1Lyt T | |
1y L+ 2 ' o -
et s =129 O and lim 8, = 2, since lim(3)n o
e o | the sum of the series iy

Then sp = # 2

ont Anc
o series 19 converge nt an

Therefore th

4. Let ws consider the series 1- N

1+1 { st (1]
(if n be even,
1if n be odd.

) is divergent.

Lot sp = 1
Then Sy
- (s Thercfore the series is divergent,
"he sequence (Sn

5. Geometric series.
- where

A. Let us consider the series 1 +a+a + a [< 1.
L

—a" _ 1 "
1-a*

b -1 3 i et
Let s, =1+a+a? 4+ +a" Then sp, = 7=

1—a
s — 1 anee i n—(),
lims, = 7=, . since lima

Therefore the series is convergent and the sum of the series is -4

-
B. Let us consider the series 1+ a + a® + - - - where la|>1.
Let sp=14a+a*+--+a* 1
Case 1. a=1. In this case s, = n and lim s, = c0.
Therefore the series is divergent.
Case 2. a > 1. In t}

R = “/'H _1 . 3 1

s case s, = <= and lim s, = oo since lima™ =

in this case.
Therefore the series is divergen.

Case = - i
3.a=~1. In this case $n=11if n be odd,

. =01if n be even.
is diverge
) 1s divergen, Therefore the series is divergent.

; 1 In this cage e
HEseries s divergeng

Thie sequence ($n
Case 4,
Case 4. o <
S¢quence (s,,) is divergent and therefor
From

A) and (B), the

D (O
Convergens if geone:

T< 1 and

. tric serjeg | tatat 4.
| divergeng i la|>1
0. Harmopje serieg a

Uy ey
hie Cries, )
1€n v, I

FHIES
Let 5 = wituz+ L
‘ I
Then S2 1 + ;L |
S4 = 1+.fk;il+ll,l']~)‘]1‘_1 | ,
i = L= Loz L g ‘
LTI
P> 4 21 1 ;} 3 itat ) ] 3
sig > l+43
1
sgm > lL+n.g.
Therefore lim szn = 2.
n—oC

The sequence (s,,) is a monotone increasing sequence. sin
o =tpp1 20 for all n
on
the sequence

divergent.

€ N. Since the subsequence (s, ) divergs

(s,) is unbounded above and therefore the series

08

X

S

X

Theorem 6.1.1. Let m be a natural number. Then the two series

uy + U2 +ug+ - ~and upe + Um+2 + Ums3 + 00 - oIl

diverge together.

Proof. Let sp =ty +ug + -+ + Un,bn = Umsy +Umez + o0+ Un

Then £, = Smin — Sm, Where s,, is a fixed number.

If the sequence (s,) converges, then the sequence (f,) conve

conversely.

werge

rees and

(

If the sequence (s,) diverges, then the sequence (t,) diverges and

conversely.

Therefore both the sequences (s,) and (t,) and conseque

series Yu,, and L, 4, converge or diverge together.

Note. The theorem states that we can remove from the beginnin
number of terms from a given series or we can add to the beg

finite nuriber of terms to a given series, without changing its behavion

regarding convergence or divergence.

Theorem 6.1.2. If Yu, and v, be two convergent series ha
sums s and ¢ respectively, then
(i) the series ¥(u, + v,) converges to the sum s —

(i) the series Yhu,, k being a real number. converges to he

The

proof is immediate.

Theorem 6.1.3. Cauchy’s principle of convergence.
S A necessary and sutficient condition for the convergence of
1S that corresponding to a pre-assigned positive e there

11 -
Atural number 1 such that

1
ntiyv

g a

IMnino

a series

eXIsts

A
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< ¢ for all n > m and for every Dty

tnag 4 + Unsp

umber p

Proof. Let B U +uz + -+ Up. )
Let Yu,, be convergent. Then the sequence (85) is convergent By
Canchy’s principle of convergence for the sequence, corresponding to ;

pre-assigned positive ¢ there exists a natural number m such that

s, < ¢ for all n > m and for every natural number p,
41y, < ¢ for all m > m and for every Natuy,)

S 9
n+p

or Up 41

FUpig-
number p.

Conversely, let us assume that for a pre-assigned positive € there exjg,
a natural number m such that

Unai * Unag + o+ Unyy [< ¢ for all n > m and for every natyry
number p.
Then | s,., — s, |< ¢ for all n > m and for every natural number .

This implies that the sequence (s,) is convergent by Cauchy’s Prin-
ciple of convergence. Therefore $u, is convergent.
This completes the proof.

Theorem 6.1.4. A necessary condition for the convergence of a series
Yuy, is limu, = 0.

Proof. Let Yu,, be convergent. Then for a pre-assigned positive e there
exists a natural number m such that

Uns1 + Unyz + o+ Uy [< € for all n > m and for every natural
number p.

Taking p = 1, | up4q |< € for all n > m. This implies lim u,, = 0.

Note. The converse of the theorem is not true.

That is, limu, = 0 does not necessarty imply convergence of the
series Lu,. Because the sufficient condition for the convergence of the
series Yu,, states that for a chosen positive ¢ there must exist a natural
number m such that

st HUpgg 4o up gy [< e for all n > m and for p=1,2,3&

Fherefore the sum of P consecutive terms of the series must be less

than ¢ whatever natural number p may be. The condition must be sat-
whed for all p and not for only a particular p.

q A
ot us consider the series Yu,, where U, -

adivergent series,

Here : 5 | 1 | 1

y L uIJ‘HOZ{H..HIl‘"

I 28

,',. Here limu,, = 0. Bul l

!

SERIES Ix1

If we take p= 1./ 8, ~ s,

Sn+p — Sn | cannot he made |ess than a chosen positive

Therefore

& 1 for every natural number p

Worke(l Examples.

PR, 1 1 1
1. Prove that the series 1 — 3+3 R i converger
o %
Let the series be ¥ u,. Then u, = (-1 1!
’ n=1
Let 8n = u1 + Uz + -
Sn+p ~ Sn | n+p
<
| H 1
Let € > 0. Then | s,., —s, < ¢holds if n - — 1
Let m = [£ —1]+2. Then m is a natural number and s, ip—8n <€
p

for all n > m and for p=1.2.3.- -
This proves that the sequence (s,) is convergent and consequentls
the series Yu,, is convergent.

n

> 9 . " y
2. Prove that the series ¥ u, where u, = S ls divergent.

n=1
Here limu, = 1. Since limu, is not 0. Xu, is divergent becanse a
iti . a series S is it —
necessary condition for the convergence of a series Yu,, is limu, = 0

6.2. Series of positive terms.

A series Tu,, is said to be a series of positive terms if 1, is a positive
real number for all n € N.

gent 1t

Theorem 6.2.1. A series of positive real numbers Yu,, 15 convergent
and only if the sequence (s, ) of partial sums is bounded above

n -

T ' —8Sp = Upey >0forallne N
Proof. s, = uy +us+-+uy. Then spoy =80 = Uan i
H 1 “ence 1eret: >
Hence the sequence (s,) is a monotone increasing sqeuence. Lhereiore
. p o e »d above
(sn) is convergent if and only if it is bounded ab¢ .
3 ergent 1 vt
Consequently, the series Su,, is convergent if and only

e sequence
($1) is bounded above.
nee bein monotone in-
Note. If not bounded above, the sequence (s} being a monotone
ase the se liverges to
Creasing sequence, diverges to . In this case the sertes diverges
} e wroes t e
Therefore a series of positive real numbers either converges to a real
a serie:

nber, or diverges to X
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Introduction and removal of brackets.

Let Yu,, be a series of positive real numbers. Let the terms of the
series be arranged in groups without changing the order of the termg
Let us denote the nth group by v,. Then a new series Yv, is obtaineq,

Example.
t ¥ - 1 1 1,14 ...
I,(l_‘u,,__1¢2+3+4+7+
Let us introduce brackets and the series takes the form
. 1 1 c..

I+ +G+D+G+3++)+G++1)t

If the new series be Yv,,, then

v = 1,v9 = %.1.‘3 :%-F%.lq = %+"'+§‘l'5 = é++%,

v, is obtained from XZu, by introduction of brackets and Tu,, is
obtained from Xv, by removal of brackets.

Theorem 6.2.2. Let Tu, be a series of positive real numbers and Sy,
is obtained from Xu,, by grouping its terms. Then

(i) if Xu,, converges to the sum s, so does v, ;

(ii) if v, converges to the sum ¢, so does Tu,,.

Proof. Let vy = uy +ug+ -+ + Up,, V2 = Up 41 + - - - + Upy, U3 = Upyp1 +
e Uy, e

Then (ry) is a strictly increasing sequence of natural numbers.

Let s, =uy +uz + - +up, t, =v1+va+---+ v,

Then t,, = u; +us+--tu, =5,

Let Zu,, be convergent and the sum of the series be s. Then lim Sp =
s. The sequence (s, ) being a subsequence of the convergent sequence

$r.). 1s convergent and lim Sr, = s. That is, limt,, = s.

This proves that the series Zu,, is convergent and the sum of the series
is also s.

Let £, be convergent and the sum of the series be ¢. Then lim tp =t
That is. lim 8, =t

*r. )15 a convergent subsequence of the monotone increasing sequence
4,,). By Theorem 5

5.11.4, the sequence (8n) is convergent and lim s, = t-

. This proves that the series Su,, is convergent and the sum of the series
i also to This completes the proof.

Note. The theorem does not hold if $u, be
Let us consider the series "

1 -1+1-1 - . (A)

Introducing brackets we get the

] 1)+

a series of arbitrary terms.

series

~.(3)

|
|
|
I
|

B -

SERIES

Int roducing brackets in another manner we get the <orje
],1171)’(1*“——--44._“' (O
The series (A) 1s divergent but the series (B) converges t
eries (C) converges to 1.
Re—arrangement of terms.
Let Sun be a given series. If a new series Yo, is obtained by 1sing
term of Tu, exactly once. the order of the terms being disturbed.

each B
) is called a re-arrangement of Xu,,.

then Yvn
Iff:N— N be a bijective mapping. Luy,,, is a re-arrangement of
and conversely if Yv, be a re-arrangement of the series Su,, then

Lun - = ¢ .
) for some bijection f: N — .

vp = Uf(
For example, let f(n) = n+1ifn beodd.
= n—1if n be even.

f)=2.f2) =1fB) =4 f(9) =3 -

""" i - gement of u,,.
Yufn) = uz +ur +us+us+ is a re-arrang

Theorem 6.2.3. Let Zu, be a convergent series of positive real num-
i / > emairns
bers.Then any re-arrangement of Zu, is convergent and the sum rer

unaltered.

by .

Proof. Let ¥u, converge to s and Tv, be a re-arrangement of Xu,,. Then
Un = Uf(n) for some bijection f: N — N.

Let s, =uy +ug+ - +un, ta=t1 27" ' .

Since u,, > 0, the sequence (s,) is a monotone Increasing sequence. A=

efore the sequence (s, ) 1s bounded

+ Un-

Tu, converges to s, lims, = s. Ther
above and s, < s for all n € N.
th = wvitvztootUn
= up@ tuge oot
< wptus+ -t Unn)e where m(
But u; 4 ug + - + Un(n) = Sm(n) < 5 o B
Thus the sequence (tn) is bounded above and being a monotone
= — ‘ sy <
Creasing sequence, it is convergent. Let limt, =t. Then t <

n)=max{f(1.....

Sn = wuptupt-coctln
! Y At
= vpaqy v T TN g £
< 1,{ +(l'L + f + Vk(n)s where k(n) = max{f 1
But vy + vy 4 - 4 vg(n) =t S t.

Sn <t = lims, <t ie.s<t
It follows that s = t.
~ This proves that the series P
5 also s,

is convergent and the sum of the series
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f a series of positive terms,
o

e

ergenc . . N

6.3. Tests for conV gl' gence of a particular series is deClded b
or diver]

1ce of partial sums of the svlll(l:)t ig I:izst Cases tp,
examining the sequer th partial sum) be(‘o?n(s i € as cap be

(the » its nature in a straightforward manner
iomml?‘; 11(, applied to the series that wil] decide the
ds w:ll ,~)th011t prior knowledge of the nature of the
ke called ‘tests for convergence’, will p,

The convergence

expression for Sn
casily handled to ¢
other elegent metho

he seri
~onvergence of t
converg These methods,

e

sequence (Sn ).
discussed here.

i First type].
. Comparison test [ rs
Thio:'egnu 631; -~ beptwo series of positive real numbers and there j;
aA ;mt(;ral 1:11mber m such that u, < kvy for all n > m, k being 4 fixed
sitive number. . .
. Then (i) Tu, is convergent if Yv, is convergent,
(ii) S, is divergent if Xu, is divergent.

Proof. Let sp =ui+up+ - +Un, ta =01 +va+ -+,
Then s,, — s, Umt1 + Umt2 + - + Up

E(vmi1 + vmpz + -+ vy)

k(tn —tm)

or, s, < kt, + h where h = Sm — ktn,, a finite number.

(i) Let Xu, be convergent. Then the sequence (t,) is bounded.
Let B be an upper bound. Then t, < B for all n € N.
Therefore s, < kB +hforall n > m,

This shows that the sequence (
monotone increasing sequence hoy;
Therefore Lu, is convergent,

A

sn) is bounded above. (sn) being a
nded above, is convergent.
(ii) Let Lu,, is divergent. Thep the sequence

Since s,, < k¢ +h, the se
< ) ue
the series Ty, . ence {t)

(sn) is not bounded above.

oo Is not bounded above. Therefore
n 1S dlvergent.

B. Limit fory,

Let 2u,, and v, be two serie,
where [ ig a non-ze

: S of positi
Then t} o finite Numbey
“I the tw serieg :
Tles 2‘un and v co .
" fonverge or diverge together.

Let ug choc

4 Se 3 it

T such ‘h)a; lL p()bltl:/e € such that | — ¢ > (. There?
2 s €<

U Ry for ) _— ’m#"l <l+eforall p > m.

Where k=i 45 0 ()

Ve real numbers and lim = ‘

Proof. | 0.
natural nymye,

Therefore

SERIES

nd vn < K'uy for all n > m where =1 s
a

3 e i)

) that Sy, is convergent
is convergent and S, is divergent if Zuy, is divergent.

By comparison test A it follows from (i

ZI'V . '
r[;y comparison test A, it follows from (ii) that 3

S 05 convergent and 3u, is divergent if Y, is divergent.
n

Therefore the two series Xu,, and v, converge or diverge together

Note. If lim ;—‘ﬂ = 0, then for a pre-assigned positive numbe

I € f‘H"r“
h u
s a natural number m such t at 0 < I—:l

ist <eforall n > m.
exis
Therefore Su, is convergent if v, is convergent,.

If lim $* = o9, then for a pre;-assigned positive number G there exists
a natural number m such that w2 > G foralln>m.

Therefore Xu, is divergent if Yv, is divergent.

In order to make use of the Comparison test we need to have a col-
lection of series of known behav'io.ur. The series Eni,, discussed in the
following theorem will be an addition to the collection.

Theorem 6.3.2. The series 1%, + 2% + 3% e converges for p > 1
and diverges for p < 1.

. - _ 1
Proof. Case 1. p> 1. Let (:‘:‘,o un be the given series. Then u, = -
1

Let v, be obtained fro;Ln_Eun by grouping the terrlnsas
It (Gt +(E+a+d+i)+(E+ -+ +
Thenv1=171;2:2%4_3%<51;4.2_15:,_”,—1_1-7
v3=4lp+.4.+7i<%:ﬁ,
U4=SLP+'”+ = <

1
1 gF T 28D

Let w, = {2,}_1 }*=1. Then v, < w, for all n.Z 2.l

But Ywy, is a geometric series of common .ratlo =T~

Since p > 1,0 < 57—t < 1 and hence Zwj, is convergent.
> =

i arison test.
Therefore Y, is convergent by Compariso e
i : : itiv 1s and v, is obtained
Since the series Yu, is a series of positive terms &

: 3 : Su, is convergent.
from Yu, by introduction of brackets, Tu,, is ¢ &

L QR (I
Case 2. P = 1. In this case the series is 1 + 3 + 3

1
Le\ts,l:1+%+%+...+:,
Th(\n Sap — 8, = . Wi S

p -

if

n s convergent if
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. ) is not a Cauc
oquence (sn) 18 1CC & hy  sequeng,

the S e L g
Hence the Series &y is not convergeng,

rgent.

This shows that .

ANVE
therefore s not conve¢

1
Then % > %’417 > 3
<1l 2

1o 1foralln2 2.
“Werefore -5 = 1 e di .

—11311(1 s is ivergent. Therefore 5.1 is divergent by Compariso o,
u ay * "

Case 3. 0<p

Case 4. p < 0. Then Jim - # 0 and therefore £ 5 is not convergey

This completes the proof.

Worked Examples: ‘ o . LT 148
1. Test the convergence of the series 15* + g + e

i i — (42
Let E u, be the given series. Then Un = “Srpn) = = Z(Zﬁ) .
n=
. . n(n+2) _ 1
Let v, = 1. Then lim & = lim 557557 = 2

Since Tu, is divergent, uy is divergent by Comparison test. \

2. Test the convergence of the series ﬁ; + 513—2 + 3_% N RPN

oC
D ; 7 __ 1
Let L tn be the given series. Then u, = DR

n=

o
Let v, = # Then lim — =1.
n—00 Up

But T, is convergent. Therefore Su,, is convergent by Comparison
test. |

3. Test the convergence of the series Yu,, where u, = vn*+1- V-1
Uy = ﬁm Let Up = n%
Then lim 32 =lim z{f\n?_ -1
n 1 fi—1y
Since Lo, is convergent ;F+ o
; Zuy, is convergent by Comparison test-

Th )
corem 6.3.3. Comparison test [

Let Lu, and v, be
natural numhe

Second type].

two series - i
s of posit there ¥
I m such that positive real numbers and
N1l o Unyg
Then ( ¥ o foralln >
wn (1) ) w - ¥
) &l 18 ”’“V(‘I'g( .
nt if Yo i o
) da | Vi 18 convergent,

ergent if ¥y,

/’rm,j by 18 (“V(%rg(,nt
u :
D
, 5 ) g mia
Iherefope 4 Dy ey St < Va where 1 m.
. "L, oy = p,o79
Or, y, < uy" v, 101 a) n

n Uy, 1‘” all " - m

“

i‘“tn, p > 1 and therefore Zp" 15 ¢
Y Comparison test.

SERIES

, < kv, for all n > m and k(= tm | ; v
or, tn Bndik{= v )18 & positive number

(! arison test (first type T
py (fomparisor ( st type), Sy, is convergent if ¥
is divergent if Yu, is divergent
gent.

gent and 2'n
el

Theor(EIn 634 D’Alembert’s ratio test.

Let Yun be a series of positive real numbers and let lim “
Then Sun is convergent if | <1, Xu, is divergent if [ |

pI'UUf- Case 1. [ < 1.
Let us choose a positive € such that [ +¢ < 1.
. 5 Un+tl _ f b
Gince lim =— = [, there exists a natural number m such that

l—f<";—n”<l+ff()rallr)2111.

Let [+€=T. Then 0 < r < 1.

T L Umtl Um+2 .
We have ——— <T, R e Lo <, where n > m.
m m+1 Un 1

Consequently, 7 < r"~™ for alln >m
or, Up < =" for all n > m.

Un g a positive number and Xr"

r
[atio r where 0 < r < 1 and therefore Y7 is convergent. Therefore
is convergent by Comparison test.

Case 2. | > 1.

Let us choose a positive € such that [ —e > 1.
Since lim Yzl = [, there exists a natural number k such that

u
l—e<“—;ﬂ<l+fforallnzk.
Let [ — ¢ =p. Thenp > 1.

We Uk+1 Uk+2
have ML > D > p,

42 > p, where n > k.
Un—1

Consequently, = > pr* for all n > kor. u, > &.p" tor all n
I ug !

ug s .
o& Is a positive number and

Fhis completes the proof.

NOt(‘,. When [ = 1, the test fails to gi\'t‘ a declsion.

. 3 pos him Yntt =]
2 r S i opoent series and lim = .
Let w, = ,1l. Then S, is a diveraents "

Lt 1. Then Xuy 188 cot

‘\ltlll'llgh for both the series lim

pergent series and lim = 1

a 4 i a1
d the other is a divergent seres
1. nothing cait be said about the convergence

Up ol

Therefore if lim

or (g .\ . \
‘ll\l‘ll“(‘ll('(‘ of the senes Yun

>

LUy IS Conver

is a geometric series of common

SH,

K.

Lp'is a geometric series of common
livergent. Therefore Yu, is divergent

l, one is a convergent ser les
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3.5. Cauchy’s root test.
o of positive real
< 17 Zun iS diVergent lfl 5 1

Theorem 6.
Let Suy, be a seri
Uy 18 convergent if {

numbers and let lim u711/n &

Then £

4 .Case1.1<l.
I n){{‘t us choose a positive € such that { +€ < 1.
/m _ |, there exists & natural number m such tha

Un <[ +eforalln>m
n for all n > m.

- L1
Since lim un
[—e<U

or. (I — )" <un < (1+€)
Let[+e=T. Then o < < 1 and up, < 7" for all n > m,
But £r™ is a geometric series of common ratio r where 0 < r < 5,

©r™ is convergent.
Therefore Lu,, is convergent by Comparison test.

Case 2. [ > 1.
Let us choose a positive € such that [ —e > 1.

Since limul/™ = I, there exists a natural number & such that
l—e<u}1/"<l+eforalln2k

or, [—€)"<up, < (l+€)" for all n > k.

Let I —€e=p. Thenp > 1 and u, > p" for all n > k.

. But Zp" is a geometric series of common ratio p > 1. So Zp"is
divergent. .

Therefore Suy, is divergent by Comparison test. l
This completes the proof.
Note.

When [ = 1, the test fals to give a decision.

Let Uy = 1/77, Then 1 1/
- Then limu;/™ = 1 and . i . .
Let up = 1/n2. Then lim uin Uy, is a divergent series.

A
and

=1 and Xu, is a convergent series

tlghough f9r both the series lim u}/™
e other is g divergent series "

Thus if lim 1/ _ '

. 1, noth;
divergence of the series EZOthmg can be said about the convergenct”
N

=1, one is a convergent ser® |

|
|

or. . 5 7 eee e
W. k :e(l EXjunples (COntlnued) .
4 (& = Con ,‘I‘g “nee o t € serj 2

1 1;( Conve Zence h e Serles 1 T 3 4
S Uy, by thf‘ ‘V’ Serles l ] en U,' = . |
Iy ‘ 4 * Blver series
" 1 8erjeg . 1 n Tl
n!

", (1 /j“(jj
141)(2, ¢ im *
By a Jan-T1) and Jiy Rutt
A lemberyg Tatig g, "
est, )
y

=0<1.

by, 18 (i()“V(?I’L’.’(‘,HL.

ro—

SERIES

5. Examine the convergence of the serjes 5 . ’7' 4+ 2

50 ]
Let & un be the given series. Since Sy | i
P 2T >0, Lu, is a series of positive

| Untl — DI im Yot _
jorms. ) and lim =g

By D’I'Xlembert’s ratio test, u, is convergent if r < 1 and Xu, is

divergent ifz>1 .
= 1, the seri z

When = eries becomes 1+ + 1 4 ... ... and this is

divergent‘

6. Test the convergence of the series 1 + % + 22_7 i ;_? ERP

o0
Ignoring the first term, let Zl up, be the series. Then u, = 2.
n=

Untl _ (nE1)n s Ungl
gedl = (2)" and lim 7= =e> 1.

Yu, is divergent by D’Alembert’s ratio test.
Therefore the given series is divergent.

7. Test the convergence of the series
I+ h+&+Hmtat
(_

Here u,, = {27t(-1"}~! and limul™ = lim{2'* -y1=1

Therefore the series is convergent by Cauchy’s root test.

Note. Here “2+ = 1 if n be odd,
= 2 if n be even.

lim #24£2 does not exist and therefore the
cannot be decided by D’Alembert’s ratio test.
s more powerful tha’ the ratio test in
be.s.

converg nce of the series

It follows that the root test i .
deciding convergence of a series of positive real num

The fact is explained by the theorem 5.16.4 which states that if u, >0
Un+1

then
. - 1 n kT
lim 2241 < Jim ui/™ < Tim ul/™ < Tim =5
S
e terms lim “2=* exists and equals

tn

If for some series Suyn Of POSItiV

l then limw}/™ also exists and equals
: (g §
decides the convergence of the series Tun.

|. Therefore when the ratio test
the root test also does.

. 1'n N Ale
rms limu, — exists and equals

Therefore when the root test
the ratio test may fail to do

But if for some series Stn of positive te
ily exist.

L then Jipy “ett does not necessarty €2
- w g aries
decides the convergence of the series Yt

S0,
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General form of ratio test.

5.3.6.
heorem 6.+ NEYp. TS ¢ 't
i - be a series of positive real numbers and let
Let Vi, beas . Untl — p.
lim "t = R, lim =,

t i L” i‘ (1.‘(‘ ‘g(’ 10 lf r>
: 1s conver (llt lf R < 1, n nt .
Hll‘l\ }Jln 18 con (1g l S 1Vt

B

Proof. Case 1. R<l . ' 1
I. +t us choose a positive ¢ guch that R+ ¢ < L.
. ‘liui uni1 — R. there exists a natural number m such tha
Sice = =4,

“nir o R4 ¢ for all n > m.

Un

= <L
Let R+e=p. Then 0 <p .
We have U=tl < p, 3282 <pyooy g B <Py where n > m.

Um+1
—-m ..
Consequently, 3 <p" for alln >m

or. Uy < ‘;‘;ﬂ " for all n > m.
un ig a positive number and Xp" is convergent, since 0 < p <],
p

Therefore Su,, is convergent by Comparison test.

Case 2. r > 1.
Let us choose a positive € such that r —e > 1.
Since lim “*=* = 7, there exists a natural number & such that

"—;‘lﬂ‘—1—>r—ef0ralln2k,
Let 7 —e=g. Then g > 1.
y L Uk N
“eha‘eTl>q‘Zi_if>q>”'vu—?i > g, where n > k.

Consequently, 2>¢*foralln >k

V

~ U
Or. Uy, > Efq” foralln > k.
"y - o
(7:- IS a positive

. number and Bg" is dj i refore
Su,, is divergent q" is divergent, since ¢ > 1.The

- by Comparison test.
This completes the proof.

Theorem 6.3.7. General form of

!,M }.u,, be 4 serie
Then ¥y

root test. }

al numbers and let lim u}/ =

mifr <, Yuy, is divergent if r > 1.

‘ s of positive e
v 15 converge
Prouf Case 1 r<

L s che

S TY

P05 4 Dositive

such that ¢ 4 ¢ <1

gy, /" ]
n . there eXists

n
"

Phe 4 hatural number m such that
Clorall m

P They ().

"

Loty o,

it &
B Yy P and by
. n
BOrIes giy
Ve by A

P for all n > m.
Pl

test,

a4 COnve
Iherefope s IVerg e
“Hy 1

( .
gy,

SERIES
case 277 1. .
Let us choose a positive € such that r — ¢ . |
y
= 1/n _ 1/n o
gince im un' = =Ty Un " > T —¢ for infinitely many n.

That is, infinite nu‘mber of elements of the sequence (i, )
than 1 and therefore limu,, cannot be ().

Th(.r(\f()r(‘, Yu, is divergent, since a necessary condition for convergence

of the series Suy, is limu, = 0.
This completes the proof.

Wworked Examples (continued).

8. Test the convergence of the series.
%+§+:}7+3%+2%+3%+ ------
Let OEO u, be the given series.

1

1 _ 1 _ 1
Then uzn = 3w, U2n+1 = Znsr: U2n-1= 27

. u _ 2\n _ i Y2ntl _ |3 13 \n+1 3
it = lim($)" =0, lim =5+ lim 5(3) ~x

1t follows that limsup ";:‘ = oc, liminf #2** = 0.
Clearly, the ratio test gives no decision.

)1/(2n+1) _ L

lim(ugn) /%" = 5, lim(uzn+1 o

It follows that limsup(u,)¥/" = ﬁ <l
Therefore Tuy, is convergent by the root test.

9. Test the series
a+b+a?+b2+add+b0+ where 0 < a <b <1

= .
Let ¥ u,, be the given series.
! ” L L U2
Here —Y2n_ — (E)n uznil — g(4)". lim A2 = . lim

Uzp—1  ‘a’/ 7 uzn b 2n-1

_ . Un+l
It follows that Tim 222 = oo lim == = 0.
The ratio test gives no decision.
b

g 1/2n . on _
limuy/? = fim (b)Y = v

L —
n+1\TrT~T =,4/a.

lim(ug,, )1/ @D = lim(a A
n=yv0o< i

: RS
It follows that limsup(un)
; - oot test

Therefore Su,, is convergent by the root te

. qde conver
N()te‘ Here the ratio test does not dectde conve

the root est does. The root te

de w positive real numbers.

Ciding convergence of a serie

are gx't';nrr

gence of the series but

wt 18 more powerful than the ratio test for
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4.8, Cauchy's condensation test.
a monotone dec
integer > L.
00
1

Theorem 6
Lot ‘\fum be m

bers and a be a posll\‘t‘
Then the series )i:f (n)

Troupi  terms of f(n) as

Proof. Grouping the terms 0 .
{f(l)}+{f(‘2)+~-'+f(ﬂ)}+{f(“‘f1‘)+"'+f(a, )1+ and igngyy

the first term, let v, be the new series. g
Then v, = f(@" ' + 1)+ fa ' +2)+- -+ f(a™) for all , >1
The number of terms in vp i8 a™ —a""L. Since (f(n)) is a ot

decreasing sequence, each term of vp < f (@t +1) and > f (a™). ¢
Therefore (a” - a" ) f(a") < vy for all n > 1
or, ©=2a"f(a") < vy for alln > 1.

< 25 foralln > 1.

reasing sequence of positive rea]
Ty
N

rge tOgether‘

Let w, = a" f(a"). Then wy

% is positive. By Comparison test, Lwn, is convergent if Tu, js
convergent and Zv,, is divergent if Xwy, is divergent. ... ... (A)

Again, v, < (a"-a" ) f(a™ 1 +1)
. < (a"=a"1)f(a™?) for all n > 2.
That is, v, < (a — 1)w,_; for all n > 2.

a — 1 is positive. By Comparison test, v, i i i
' By s is convergent if Yuwy is
convergent and Twy, is divergent if L, is diverrlgent. e oo (B) '
B
Brom (A) and (B), Zv, and Sw, converge or diverge together.
ut Zv, and £f(n) converge or diverge together.

' Therefore ¥ f(n)
diverge together.

This completes the proof,

.'.ikf EiiimplES (C“l“nuej)'
10. I“,ﬁl th’f ‘,'UHVL‘YgL‘D.Ce ()f ,he serles .
E n

L /!h) = J- T

’ hen ( i

OBILIVE yey ) '

POsitive rey) inberg, f(n)) e o Of
By« aUchy’s oy,

COUVerge ivery
an/zn ) = i
it .“}j

ndensatio test, the
Yogethor. o
Dand Lht'nsit,y-u b3

Y
i ) 27 f(ony s .
MOWE it >‘f(u) is dy f 2 ) is le(?I’g‘(}uL,

vergent, e sl s .
A Le, N s divergent.

and Zuy, ie., 5f(n) and Sa™f(a") converge @

two series £f(n) and 2"/

SERIES
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yiscuss the convergence of the serjps v
]1-] ETies L p > (),
s ]

Let f(n) = - As P > 0, the sequence (f(n)) is o
- sequence of positive real numbers. J 18 A monotone decregs-
e ~ ", : ! v i .
By Qau(,h:Y 8 condensation test, the two series Ef(n) and 27 f(on
rge or diverge together. i f(zr)

1
PRGN

conve
1
g f(2") = 2" 35 =
L \™ ig a geometric seri i .
L(EFT) g e ries and it converges if p > | and diverges
ifp< L Therefore ?77 1s convergent when p > 1 and is divergent when
g<ps L

. .o 1
12. Discuss the convergence of the series ¥ ———— p> 0
2 n(logn)?

Let f(n) = 'n’(TBéT)?* n > 2. As (logn) is an increasing sequence and
p> 0, {log(n + 1)} > {logn}” and therefore (n + 1){log(n = 1)}” >
n(logn)?.

Therefore (f(n))3° is a monotone decreasing sequence of positive real

numbers.
By Cauchy’s condensation test, the two series ¥ f(n) and £2"f(27)

converge or diverge together.
L f(2n) = E(_nTolg—ﬂF and this converges when p > 1 and diverges
when p < 1. Therefore o§ f(n) is convergent when p > 1 and divergent
n=2

when 0 < p < 1.

If the limits lim %=t or lim {/i, be equal to 1. D".&lenlberF"s :’s[io
test and Cauchy’s ro;‘c" test fail to decide convergence of the series Yu,.
e delicate test due to Raabe.

In such cases it is often helpful to use a mor

Theorem 6.3.9. Raabe’s test.

Let Su, be a series of positive real nu e
e dhiverge 1< 1.
Then L, is convergent if I > 1, Tu, is divergent iHL =

Proof. Case 1. 1> 1.
Let us choose a positiv
Since lim p(-Ya- —1) = [, there ex |
Up+1 ; § ¥ 5
e ¢ ue ) < 1€ foralls
I—e<n(n ~D<

1bers and lim ni TL ~1=1.

o ¢ such that [—e>1 .
ists a natural nunber m such that

~ gy
1 m.

Let [ — ¢ = . Thenr > L. for all n > m
We b w Pty forabi et
ave ni,, — ni wyi :
¥ LUy nat Dttt o all n > m.

Ory nay, (n+ Dt -~ W
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(m+ e Ul 1)tm1
(7 = 1)Um+2

We have mtm 9)
4 2)Um+2
(m+ 1tm+1 (m =&

(r- 1)un, where n > m.

-
(n ]\“” 1 Ny

> ,‘,1)(um+1+um+2+”_
Consequently. mtm = ntin > ( ) for .
‘—‘1'—' —_—
n>m FRETINDR A +up < 73 (mu ”Un)
Or, Um+1 m+2 1 m
< syMum

—Lmum, where sp =u1 tu2 + - +uy,

Ol Sp = Sm S
+quoralln>m

——771",”
(sn) is bounded above and therefy,

or. Sp < 71
This >ho“.~ that the sequence

the series Sy, is convergent.

Case 2. [ < 1.
Let us choose a positive € such that [+-€ < 1. Since lim n(tn -1)=)
e

there exists a natural number k such that
l—e<n(-—1)<l+eforalln> k.

Let [ +e=p. Thenp< 1.

We have n(—u-"n—': -l)<p<lforalln>k.

Therefore n(uy — tny1) < Pupns1 < Upyg for all n >k
Or. nuy, < (n+ 1)ups for all n > k.

We have kuy < (k + 1)ugyq

k+ lmm < (k+2)ugs

n—- lvun 1 < nup, where n > k.
Consequently, Nuy > kuy for all n > k
or. u, > kuk l

kuy is a posit
e positive number and £ is a divergent series. Therefore St
T 2ent by Comparison test.
e completes the proof,
Note, If] = 1.
= L. the i
the series Ty v test is inconclusive, Thig can be established by takmg

<y, Vhlrpu
2 40 the gy y>0forallneNand__L_1+ 42
s Ly, . where y —

o ,——forallnEN
Tem 6.3
3.10, Genera) form of Raabe’s test

Let 3
Uy, b 4 g
i
et Timg gy u 8 of Positive

jh’]‘>u i

n I8

nlOE"7

real numbers
1)= R anq lim nf e _ 1)= -
4

Onverge
’ ”//J ity is dive 1.
P> i Jvug(’nt if R <
-~ .
5 Chooge .
a4 DOsItjye ¢
Such gl
aLr

>,
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Gm(e hm (u n41 - 1) =T, th(’r(' o

(ﬂ,,l)>r—ef0ralln2m_
Un+1

Let r —€=~k. Then k > 1.
We have nun — Nny1 > kuy, ) for all p >m
or, Mtin = (n+ Dunyy > (k — Lunyy for all n > m
We have M — (m+ 1)y > (k= 1)y,

(m + Dtmtr = (m+ 2)up iy > (k- 1)

Xists a natural number m such that

U2

(n — Dup—1 —nu, > (k- 1)u,, where n > m.

Consequently, mum — nuy > (k= 1)(tmy ) + tmag + - - -

n>m
or, Um+1 +Upy2t+ - Fu, < =T (mum nun)

1
< mmum.

+u,) for all

Let s, =u1 +ug + -+ up.

Then 8, < Sm + Ty Mtm for all n > m.

This shows that the sequence (s,) is bounded above and therefore
the series Yuy,, is convergent.
Case 2. R< 1.

Let us choose a positive € such that R +¢€ < 1.
Since lim n(;%=— — 1) = R, there exists a natural number k such that

-1)<R+ef0ralln>k

gz

Un+1
Let R+ e=p. Thenp< 1l

We have n(un — tny1) < PUns1 foralln 2k
ie., n(un - Un+1) < Up41 foralln >k

or, nuy, < (n + 1)uyyq for alln > k.

We have kuy < (k + 1)uk+1
(k + Dugy1 < (k+ 2urs2

(n = Dup_y < nu,, where n > k.
Therefore kuk < nu,, for all n > k
Or, Uy > kug.+ for all n > k.
k“k is pO@ltlve and £1/n is a divergent series.

divergent by Comparison test.

Therefore Yu,, is

This completes the proof.

Worked Example (contmuvd)

13. Test the conv ergence of thp series

11 1.3 1 |l’sl
I}P'.!'Il+'_rji.l‘\"|+ 2067 t:



196

be the given series.
Un Un41l _ (2n—1)2

N
Let ¥ _
2n(2n41) ang

" L35 (=8 Lo for dinZ 2 =
Then Un = 346 (2n 2)

= ..
i n.
" test gives nO decisio

1.
h"‘_n\lomlwrt ‘s rat1o
abe’s test.
Ri - Im 255 =§>1
-1)= @n-D? 2
n—00
is convergent.

Let us apply
lim n( '—‘%‘f}
B: \Raahe‘s test, Dun
garithmic test.

positive real numbers and limn log ﬁ'ﬁ &
f1>1,Luy is divergent if | < 1.

Theorem 6.3.11. Lo
Let Tu, be a series of
Then Lun is convergent i

Proof. Case 1. [>1
h that [ —e > 1.

Let us choose a positive € SUC
Since limnlog ;22 = I, there exists a natural number m such that
nt

l—e<nlogﬁi~l<l+6foralln2m.

Letl—e=r. Thenr > 1.
We have nlogﬁ: >r>1foralln>m
or. 2= > ¢"/™ for all n > m.
Sir{ce. (1+ %)") is a monotonic increasing sequence converging to e
and ¢ is irrational, (1+ 1)" < e for all n € N.
It follows that ;*2- > (14 1) for all n > m

= ()"
Let v, = 1 U, nr
n =77 Then s> v::l for all n > m.

at ¢ Un4 'n.
: ?hdt is, Tt ¢ % for all n > m.
:" /)H is S y 1 -
: iparison test, Lu,, is convergent since Yv,, is convergent.
Case 2. )< |1,
Let us o .
;?( u‘] v(,hoolse a positive € such that | + ¢ < 1
mee imnlog Mo — g :
w =L, there existg
o = b XIsts a natu thaé
l-c<p log tn_ ol umber p .

iy <l+eforalln > p.

tlog A<k for all n /p. .
or /‘ o ok for all
‘ul.u, (1] i ez .
oS
W e and ¢ 111/;1 J.) ‘)" 1% 8 monotone decreasing vergin
Therefyy. foual, (1 4 “'J),, e .' asing sequence con
e (I k orall n > 2.

wo ) forall g, L -

h 48
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1 < x
Let Wn = (n—1)F for n > 2. Then Tw
2

foIﬂlanl_)> 1.
By (lomparison test, Yu, is divergent.

Case 3. l < 0
Let us choose a positive € such that [ + ¢ <

i : u _ .
Since limnlog ;>2- = I, there exists a natural number q such that
nlog _Lu:H <l+teforalln>yg.

n is diw-rgpm and "ot Wiy
. S

We

Let [ + g:j. Th?n s <0Oand nlog 2~ <3< 0foralln>g
or, nlog >p' >0 (where p = —s) foralln > ¢

Un
unt1 > ¢P'/™ for all n > g.
Un Seen

or,
Since e > (1 + 2)™ for all n € N, it follows that 22 > (1+ L)' for
Un n

allm > ¢. ,
Let w, = n? . Then —";‘“ > ——wl:“ for all n > q.
As Sw,, is a divergent series, u, is divergent by Compasiron test.

This completes the proof.
Worked Example (continued).

14. Test the convergence of the series
2.2 3.3
1+%+.2%+33’!” 4.r ez >0

Ignoring the first term, let ;jo u, be the given series.
n=1

ntz®  Un4l _ 1\n s Upgl
- —u;——(1+n) z and lim =2= = ez

Then Up =

By D’Alembert’s ratio test,
Su,, is convergent if 0 < z < 1/e, Zun is divergent if r > 1 ¢

When z = 1/e, let us apply Logarithmic test.

: . nl_1 2 n1_1
limnlog s o= limn[l + nlog 2= 111:1[11 +n ‘Iog =7
lim [n+n®log 2yl = 3. by sequential

. 5 _1

. [Ilglgo [z+a%log X] =5 = M0
Criterion for limits.]
By Logarithmic test, Su, is divergent when £ = 1

S . N : e 1 ivere fa>
50 the given series is convergent ifo<er < and divergent if r > 2.

Theorem 6.3.12. Kummer's test.

Let Su,, and X1/d, be two series of positiv

) — 3
n — —un_
u,,Hdu du+l-

If lim w,, — & > 0, then Yt B convergent.
k< 0 and Y1/dais divergent, then ¥

e real numbers and let

u

If lim o, Uy, is divergent.
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pmum ¢ such that k —¢ > 0.

a natural number m such that

il s exists
] k. there €
e w, < ke for all n > M.
k- €S
Then 7 > 0 and T,‘:’j dn+l > r for all n i
s d”\m“forallnzm,
s10n
: Um+1dm+1 > TUm+1

on We have H",dm

1”‘ =%
Um+ 7dm+2 > Tum+2
i, 1~ Un d S ru,, where > 1.
1 Un
S0 U n “ndn > 7(Umt1 + Um+2 +-t Un) foralln >m
o. Tl — tnti)

".'““m*r2+'”+u'"

< %’U’mdm~

.wheresnzul-{—uz+...+un

< lUmdrn
—umdm for all n > m.

T, Sy — Sm

or. Sn < Sm t
The sequence |
Case 2. k < 0.

Let us choose a positive € such that k+e<O.
Then there exists a natural number p such that

k—¢<w, <k+eforaln>p.
This gives 3'4—" —dpsy <0foralln>p
Ly < u,,-]dml for all n > p.

We have uyd, < up+1dpsr
dp~ '_dp-l < up+2dp+2

Ly 1 < Undy, for alln > p.
50 updy < uydy, for all n > p
0> '“-’3 for all n > p.

~ uyfdy s positive and Z~— isa
berefore

a divergent series.

¥ h\rrgvm b} Comparison test.
(’ P

orollary 1. If we take d, = n, then
s~ (n+1)

R ERG - ) -1
B 1)1
Let ligg p, T
3 . ) Then Kummer's test gives

U 18 COuvergent i | |
< A, 08 di "
This is n i8 ‘llV“J'g(-m, ifl<1

Rabbe s 1oy
(Imullm’y 2.0 we 1k d

L then , 4a | and

5,,) is bounded above and therefore ¥u, is convergent,

w

SERIES

. u
Jim Wn = IIIII( ;""Ll’ — 1)
Uy

. T \ = .
et im = = [. Then Kummer's test gives

Sy 19 convergent if ; > 1oieifl < 1: Su is dive
1(‘,.if/’1 o
This is D’Alembert’s ratio test.
Theorem 6.3.13. Gauss’s test.
Let Suy, be a series of positive real numbers and let o — ]~ * -
b -

where p > 1 and the sequence (b,) is bounded.
Then Suy is convergent if a > 1, Lu, is divergent if a < 1.

proof. Case 1. a # 1.

199

— —1i a b 2 " 3 i
hmn( ] 1) = limn(% + 5) = a. since | 0 =),
By Raabe’s test, Tu, is convergent if a > 1 and Su, is divergent if
a< 1l
Case 2. a = 1.

Then —“— =1+z +
Let us apply Kummer S test by taking d, = nlogn.

Then wn J—"Zn':l - dn—+—1
= nlogn(1+ 2 + o) —(n+1)log(n +1)
= (n+1)logn+ 228" '“""—(n+1)lon(n-1>
= (n+1)log—ﬁ+fﬁ,'{b

lim w,, = lim(n + 1) log(1 - ———) + lim 17 b,

= —1, since limlog(1 - n—;l)"" =loge~! = -1and

i logn .
lim 255 = 0 and (b,) is a bounded sequence.
By Kummer's test, Yu, is divergent.

Worked Examples (continued).
15. Examine the convergence of the series 1+3 3

Let S

24

n=1

u, be the given series.

Then w,, = ,” ). for all n > 2.
i S

uw,

n4 1 +1 -
= in® and lim © =L

1 2 intt
) \]( qmbert’s ratio test U\p\ no decision

Let us apply Raabe's test.

" int! )
limn g anet! !

iston

liny (v 1)

LT
Ranbe's test gives no de
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Tauss s test.
Let us apply (auss y
Up 14 = + T

Yns

 =1and b, =1 4
of the form 1+ at %% where a = 1 and b, 4 and 5o
un_ s ¢

(b

i« a bounded sequence.

Su, is divergent.
By Gauss's test, Stn 18 diverg

16 H\'pergeometric series.

) a(e+)(a+2)B(B+1)(B+2) 3 |
T R F X RTCTo1 (=) M LI

1.5

where a.3.7.7 > 0.

x© .
Ienoring the first term, let ?un be the series.

\a+1)~-(a+n—l)ﬁ(ﬂ+1)‘“(ﬂ+n—1)xn forn > 1.

Then un = 1.2y (y+1)-(v+n—-1)
wnet _ @)B4M) n g fim Yt = g
Un (14+n)(y+n) n—oo Un

By D"Alembert’s ratio test, Lu, is convergent if 0 < z < 1 anq
Suy, is divergent if z > 1.

_ _ (n+1)(ntr)
When r =1, ﬁ‘: = m

_ (yt1-a—B)n+(y—aB)
=+ (o)

S (e 4 21y 228 ey
Sl agy _atd ey

=1+ MEJFL (y—aB)— o
. . Y=af)~(a+B)(y+1-a-f)+
€T comtaining * and higher powers T(L)Zf 1) el
n

%@, where lim ¢(n) is finite
n— o0

=14 2tl-a-g
' n
15 bounded.

By Gausg's test, whep
and Ty, i divergem if ~

Therefore the
Nher,

aud therefore (g(p )

?zl, Zu, is convergent if'y+1—a—,3>1
Tl-a-p<y,
SETIES i conyer

. .
; 1. the Series is

gent if 0 < z < 1 ang divergent if £ > 1
“Onvergent, if Y > a+ f and divergent if

N~

UE 3]

The ordey Eymbo) ().

Lea J and D b 1y ;
P p O 1 »
a latyry) Nitmhey . Lctiong of n de

sufficiens|. D he e
HAently large , Wltimagely

.

. . oi1ig
fined for all n > m, m be*

or |
onotone with ¢(n) > 0 ;

SERIES
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If there exists a natural nym}e, Mo > m snck
3 - 0 = Such th: |~
for all 1 2 Mo, k being a positiye const Vthat |f(n)| < ko(n)

ant, we Write f

=0(p)
ch that fln) = hAn;ofn/,, where h

Thus O(¢) denotes a function f su
s 8 hounded function of n,

In particular, f = O(1) means that f is 4 bounded function of 1,

Examples.

1. Let f(n) =512 4+ 3n + 1. Then f(n) = 0(n?), since £(n) < 5n for
alln > 1. L ’
2. Let f(n) = 527 Then f(n) = o(d)

. 1£(
.smceill_.1;,5,,/_,x
n

le— n
3. Let f(n) = ZE53n41 They f(n) = O(1), since fr) _, - J——

n

4. Let f(n) = oo Then fin) = O(L), since 10) 1 g
n— Q.

5. Let f(n) = 2sin 724_7'( Then f(n) = O(l)~ since g f‘n,l < 2 for all
n>1.

Alternative form of Gauss’s test.

Let Yu,, be a series of positive real numbers and let
iy =1+ 24 0(%) where p> 1.

Un41
Then Yu,, is convergent if a > 1, Xu, is divergent if ¢ < 1.
O(%) denotes a sequence (f(n)) such that f(n) = h(n).
' (h(n)) is a bounded sequence.
Therefore —%n_ =142 4+
Unt1 n
andp > 1.
By Gauss’s test, Du,, is convergent if a > 1. Su,, is divergent if a > 1.

n—.? . where

h(n)

~7+ where (h(n)) is a bounded sequence

i Worked Example (continued).
|

17. Test the convergence of the series
|

1y2 1.3\2 13512 1 ...
(2) +(T4) +(2‘.]_ﬁ_) =+
Let & : :
et ¥ wu, be the given series.
n=1
T — (135..2n=112 forall p > 1
hen U, = {___——2_4.6”_2" }# for RS
Uy _ (2n42)2 2 4 =)
Uiy T GarD)? (H’,: \l W
— + = + x\l'j"(\"}
- (l n ne l‘ n i
1+ 2+ 00y

n
By Gauss's test, MNu, is divergent.

y .
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n and Bertrand's test.
\ R
6.3 4. De Mor# o
BNET sos of p«\\‘iti\w\ real numbErs anc
v Vi, DR QEIIER ¢
1OV~ “ l.}‘\g'.‘ ',
. roent i~ and divergent it ] < 1.
} <, s COMErE
Then .\J:- PR ‘
o 1) -1 log n-
Do l,\xth e |
. L
v =145 nlogn

, where d, = nlogn.

"1.(37,; — @+

<« «1« isa divergent series and

ﬁ:: dn
= Magplgn- (T 1)log(n +1)
t'n tin-1 - 0 log(n N 1)

1 by G H—
\1-;7-@)7110@71 (

(n-l\,log;j—l + by-
lim Wy :ﬁmlogﬁ +1=-1+1L
== tifl—1> 0, ie,ifl >1and

By Kummer's test. Su, is convergen
ifl < 1.

Ty, is divergent if 1-1<0.1e,
Worked Example (continued).
18. Test the convergence of the series

1 14 147
’3)3*‘53)3—(?5_.8")3"’"'

1.4.7...(3n=2) B.

xX
Let £ un be the given series. Then un = {355 (3n=1)
Ynt1l _ ( 3n+1')3
Un, 3n+2/ "
i U _ 1)\ = i (3n+2)>—(3n+1)*
Jim n(55; — 1) =limn] (3n+(1)n L]

. 3 2

= lim 27n°+27n"+7n
5731973 100 L1 —

2Tn3+27n?+9n+1 1.

Raabe’s test gives no decision.
Let us apply De Morgan and Bertrand’s test.

- 1)=1llogn = lim (=2n=1)1
) }Ogn~hmm_;2773w_°_g:ﬁ

= lim —=2n°=n? _ logn
23427024 9n+1" n?

=320, since lim &%
= .0, since lim lonzn =0
r =0<1.
all ¢ > ¢
1 and Bertrand'g test, Lu,, is divergent.

Theorem 6.3.15, Abel'g
If %u, be 4 convergeny

monotone decreasipg o
d e

Uy,

lim n
Ni—= u

By De Mory,

th .
€orem or Pringsheim’s theorem-
Series nositi is
gies > Positive real numbers and (un)
+ then Jim py,, = (),

wy

SERIES 903
20

a S i CONVEr
Qinee Uy 18 conver gent r ol )
wof. SIN n gent, for a pre-assigned positive ¢ there exists

mber m such that

?
N n:\tuml nu

bpsa o F Unag <5 for 5 R
fUp 2 nip (< 5 forall n > m and for every natural

| Up +1
aumber P

Lot n =1

~ -+ R R - € f

Then tm+1 + Ums2 T+ lmyp < 5 lor every natural number p.

But wm+1 T Um+2 +o A Uep 2 Pl SiRCE (U, ) IS @ monotone
Jocreasing sequence.

(Consequent Iv, Plimsp < 5 for every natural number p.

Let p = m. Then 2mugm <€ ... ... (i)
Lt p=m+1. Then (m + 1)ugpmer < 5.
Therefore (2m + 1uzm+1 < (2m + Wttgmag < € o oo (i)

From (i) and (ii) it follows that nu, < ¢ for all n > 2m.
This shows that limnu, = 0.

Note. If (u,) be a monotone decreasing sequence of positive real num-

bers and lim nu, = 0, then Yu,, is not necessarily convergent.

For example, let u, = m—j?;. n > 1. Then un:; < uy foralln >1

oo
and limnu, = 0. But Su, is a divergent series.
2

Worked Examples (continued).
19. Prove that the series ()P + (337 + (332 +--
is convergent for p > 2 and divergent forp< 2.

oC
Let ¥ un be the given series.
1+ )P0+ 5,
{1+2+0(z)
1+ £ +0(3)-

Su,, is convergent if E>1 ie. if

—p

)
Hi- £ +00k)

n

n=
T LT 2n+2\p
hen Un41 (2n+1)

I

Il

By Gauss’s test, the series p>2
and divergent if £ < 1, i.e.. if <2
20. If Su,, be a divergent series of positive real numbers prove that the

series N-Un_ i di
Zl+u,x is divergent.
Let Sp=up +ug+ T Une

Since the series Su,, is a divergent
Sequence (s,,) is a monotone increasing sequence and lims,, = .

series of positive real numbers, the

Therefore for every natural pumber n we can choose a natural number

Psuch that Snpp > 1+ 280
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h that [ +€< 1. orked Examples (continued),
Hive ¢ such orke™ N, .
Proof. (i) Let us choose @ I’“-“““ n such that fxamine f}:( cONVergence of the series
roof. mber 1= s 2 3 14
I iets a natural DU . , L4y oot
There exists 8 185, 1] | 4 ¢ for alln 2m j-g T 4
€ < Tunl x . .
sl [unt1l < p for all n > m. Lot & Un be the given series. Then v, — (|17’
. Then 0 <7 < 1 ANC Tunl ~ =l “
\ 4 ¢ . ) n
‘\1[ ] »thplg<r. il — gﬂfl)( 1_":(1+l)n and li Upyi
Then lmttl <7 it 1 dbnst gl ntl 'n n Im === =e > ]
hen 1,7 | lumd¢ . "
! un o pn-m for all n.>m Ratio test, the series Yu, is divergent
(‘l\ll‘(‘(“l(‘l]1l\" - <7 B‘ gent.
o I 5 >m. : . 2 3
o sl SR for all n > " ince 0 << L. 3, Examne the convergence of the series | — '31'% + 8
0} rergent seties, * )
But Sr" is a conve ; is ergent. Th 0
j ories S|un| is convergent. erefore t}, ) i - (n1)3
By Comparison test: the .sorwt |un| the et & un be the given series. Then u, = (-1)"*! 25 for n > 2
.y e abs ; convergent. n= ;
series Sun 18 absolutely ¢ § - Junsil — Jim .5 G| <1
ive € such that [—e>1. lm =, (2n+1)(2n+2) — 4 .

ii) Let us choose a posit
There exists a natural I
|—e< i < l+¢€

fun
\I-(>1foralln2k.
Hence the sequence (|unl) is ultimately a monotone increasing se-
quence of positive real numbers. S0 lim|u,| # O and this implies
lim u, # 0. Consequently. the series Yu,, is divergent.

] number k such that By Ratio test, the series Xu,, is absolutely convergent.

for alln > k.
Alternating series.

Definition. If up > 0 for all n, the series E(—l]"”un called an alter-
1

|Un41]

Therefore .
nating series.
Theorem 6.4.5. Leibnitz’s test.

Theorem 6.4.4. Root test.

Let Tu, be a series of arbitrary terms and let lim |un |/ =1
Then (i) Su,, is absolutely convergent if I <1,
(ii) Su,, is divergent if [ > 1.

If (u,) be a monotone decreasing sequence of positive real numbers
and lim u,, = 0, then the alternating series
Uy — ug + Uz — Uy is convergent.

Proof. Let s, =uy —ug +ug—-"+* (—1)”“u”.
Then Sopt2 — Szn = Uzns1 — U2n+2 2 0 for all n € N.
The sequence (s3,,) is a monotone increasing sequence.

Proof. (i) Let us choose a positive € such that { +¢ < 1.
There exists a natural number m such that
l—¢<|u, V" <l+¢eforaln>m.

2u,

Let l+¢=r. Then0<r<l.
We have |u,,|!

or

"< rforalln>m.

u, < r"foralln>m.
But ¥Lr’

15 a convergent series, sj
St ¢ rgent series, since () < r < 1.
v Comparis = > seri s
B ] 4mson test, the series ¥ | up | is convergent. Therefore a
2y, 18 absolutely convergent
Lt us « i i
J 1 Choose a positive ¢ such that | — > 1
bere eximts ¢ 7 .
At natural number k sucly that
; :
e e |y, |V [
Therelore o+ | " L+ ¢ for all n > k.
s " orall n >
Yo N ju, | £ () '

and this " ™
s divergent inphies lim un # 0. Consequently, the ser'®

S2n41 = S2p—1 = —U2n

+ U2n+1 < 0 for all n € N.

Cay

(8,

5

The sequence (so,,+1) is a monotone decreasing sequence.

Again s, = uy — ug +ug — Ug 0 Un

, = uy — (ug — ug) — (g —us) — 0 T M S
lhe sequence (s2n) 18 bounded above.

Sanpl = Uy — Ug +ug — Uyt Ul

= (uy — up) + (uz — wy)

The sequence (s2,41) is bounded below.
Therefore both the sequences (520) and (s20 -1
e lim(sg,, 44 — s — (), both the SeqUENCEs (32n-

«) converge to the same limit.
) is convergent

S U2pet > WL

) are convergent

) = lim w2+t

Hene | consequently the ser
l(l\((' the sequence (sn and colseyg

e,

" g, is convergent.
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ool (he series nnd Sn be the nth partla,l Sum tth
L -

Note. If s be the sur a1 € N,

0< (=1)"(s— 8n) < Untl
1\.,‘:“'“] Un+2 + lln+3—"”]
' CUpg2 F Unt3 T
= ps1 — (Unt2 ™ 11"+3) = < Unyp.
o) = (Un+1 — 1ln+2) + (Unt3 — un+4) +->0,
(=1)"(s = 8n) < Un+1 for all n e N,

s — 8, =\

or. (=1)"(s — 8n) = Un+1~

Also (-1)"(s
Combining, we have 0<

Examples.

1. The series 1 -} + 3 - .o convergent by Leibnitz’s test,
1 i s
2. The series b — g7 T 337~ convergent by Leibnitz’s tes;
s 3135 4 ... -
3. The series 1 - 1+ 33 - 235 + 1? cox;vserge;lt_k‘tl))y Leibnitz’s tes,
1.3 (2n-1) 1.3..... 2n—1 B n
since lim i:7‘ = =0 and =555 > 24...(2n+2

Theorem 6.4.6. Abel’s test.

I the sequence (b,) is a monotone bounded sequence and Xa, is
convergent series then the series Yay,b, is convergent.

Proof Let s, = ay+ag+ -+ ap, tn, = arby + agbo + -+ + anby,.
Then t,, = s1by + (sp — s1)by + (53 — $2)bg + -+ - + (Sn — Sp—1)bn
= .51(’)1 - bg) -+ 52(b2 - b3) 4+ 4 S‘n(bn = bn+1) + Snb‘n+1-

since Ta. is conve: i i

Smee La, is convergent, the sequence (s,,) is convergent. Since the
sequence (b, | is monotonic and bounded, (by) is convergent.

Therefore s, b,,.1 tends to a limit ... ... (i)

_ Lot d, = b, — b,.). Then either d, > 0 for all n, or < 0 for all n;
fi;ﬂ,fl;,,’ ’f e w;v‘i; = b1 = bus tends to a definite limit, since the
Bersuse 11 gent. Therefore £d,, is absolutely convergent.
conves :_l:# fh: yjm""(:" ('S")"b' bounded and the series $d, is absolutely

ent. the series Yy (],,”lb absolutely convergent by Theorem 6.4.2

Therefore 1}
1 W seguence (Y ig o 11
1 2 #ndy ) is convergent ... ... (ii)

Fron and |
bl and (1) it ot
1t follows that the sequence (t") is convergent and

Ve proves that
P 1al the perjeg Ya,b, is convergent

Examples,

1. Ihl’ “Iiep ,‘), i - B Cony ¥ )y )l] 8 b l)" N
y o ) nlogn 1Yy Jent l : A] o]’a Lest, ‘.-j”(«» ) -_‘,,,",_/ 13
a oony “rgent TE and e LTI |

L1V s LTS ) uence ( )

. b ing
SUEnce bougded below logn )2° 18 & monotone decress

SERIES
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" The series A 1S convergent by

rgent series and the sequence (14 1 -
¢ bounded below. n’

Abel's test since ¥, =1 is
a conve

)15 a monotone decres
~(‘(]”ml<‘ e decre ASINg

Theorem 6.4.7. Dirichlet’s test.

If the sequence (by) is a monotone sequence conve
sequence of partial sums (s,) of the serjes Ta, is bounc
b, is convergent.

Zing to () and the
led, then the series
Tan
Proof. sn =01+ a2+ +an.
Let tn = a1by +agby + -+ +a,b,.
Then tn = 8101+ (82 = s1)b2 + (53— 2)by + - + (5, — 5,1 )b,
= s1(b1 = b2) +52(b2 = b3) + -+ 5,(by — bpsy) + $2bpe .

Since the sequence (sy) is bounded and limb,, = 0,lim s,b,,.; = 0.

Let d, = b, —bny1. Then either d,, > 0 for all n, or < 0 for all n: and
dy+dy+ -+ dp(= b1 — bpt1) tends to a definite limit since limb,, = 0
Therefore X.d,, is absolutely convergent.

Since the sequence (s,,) is bounded and the series £d,, is absolutely
convergent, the series Xs,dy, is absolutely convergent by Theorem 6.4.2

Hence the series s, d,, is convergent and therefore the sequence (t,,
is convergent.

This proves that the series Ea,b, is convergent.

Note. Leibnitz’s test is a particular case of Dirichlet’s test. If (b,
is a monotone decreasing sequence converging to 0, then the series
Z(=1)"*1p,, is convergent by Dirichlet’s test, since the sequence of partial
1 ¥

sums (s,,) of the series £(—1)"*" is bounded.
This is Leibnitz’s test for an alternating series.

Examp]es.

s hlet” nce the
L The series off "t is convergent by Dirichlet’s test. since the
SO n=1 vn
Huence of partial sums (sn)

SeqUen - . .
“Iuence ( ﬁ) is a monotone dec

f tht series \‘l -1)" + IS bounded and the
0. 8 S

SIE SEC 5 e ng f )
l‘t‘kL'ill., sequence converging to L

T o0 nelo, P Yirichlet's test, since the
& The series 3 1L js convergent by Diri
) W log(n+!

SEQuen e . X )

lence of partial sums (5,)
Ny N
“Quence ( ) is a onotone

C b ol “\l [)”'5 1> [‘"Illh{t‘\‘. i the
of the soeres . I and the

l\‘\'l'\‘&k‘ll\\' \'(‘\llh‘ll\'l‘ converging to u
( 2

|
log(ni 1)
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mnv(‘rg(‘nt series.

ios Dy 18 CE ondit
A series Sun 18 called €6

is not convergent.
ent series is also ¢

ondit jonally
ionally convergent if ¥, .
n i

6.5. C
Definition-
convergent but ¥ | Un

A condit jonally converg ;
absolutely convergent Series:

S

alled a semi convergent ser
t Serieg

or a non-

Examples. . is convergent, but the serje

1. The series 1
§ i 11
:

1,1 L.
ﬂ§+3 4+

is divergent.
, 1,11
theser1osl-§+§'3+

1,130 40000

TEho rgfor(f ...... is conditionally convergent,

2. The series S(=1) gy 8 convergent, by Leibnitz’s test.
1

o0
ivergent series. Therefore 21)(~1)”‘+1 2n1_1 is a con

x
i :
[y -
But 5,7 152 d
ditionally convergent series.

(1" ¢ convergent, by Abel’s test.

3. The series TR

L

But the series & —L— is divergent. Therefore b (=) sl ;
S iy nlogn g . 5 nlogn is a condi-

ionally convergent series.

4. Show that the series ——Lt— — =L + =1 :
1 1€ Series 1 yp (2+a)”+(3+a)P —eeovya>01s

absolutely convergent if p > 1,
conditionally convergent if 0 < p < 1.
& s 1 1
LT/—. Zu, be the given series and v, =| uy, |
hen T, is e ies ‘
! . Is a series of positive real numbers and v, = (—:17 :
) ' ) n+a
;J‘l wy = . Then lim 2= = 1
By Compari " con
v Comparison test, Yv,, is convergent if p > 1
—~ . . ’
Yoy is divergent if 0 < p < 1.
p ~ 1 Iu this ce u, i N i
convergent. Therefc :d“: E‘fﬂ is an alternating series and ¥ | un |
ore Yuy, is absolutely convergent

(
J<p<l In
posit

ence of

this case (v, ) j
(vn) is a monotone decreasing sequ
n }'lrlr”,

IVE real nurmhe :
ere and lim v
e 3 imuv, = "
Zuy, is convergent « = 0. By Leibnitz’s test, (—1)
Since § )
~ | Uy 18 diverge .
gent, Y, is (',()“(li]i(;“u”y ('()IlV(?I‘{,’,‘(‘llL

Let
Yu, vbv a series of pog
o=y, if u, q
0if u, < ’

Ve res
ve real numbers and let
Oifu, -

Uy i, < ()

.

SERIES

N

an Sp, 1S a series

[hen $pn 18 8 ries of positive real numbers along with some ()

Tries . 8 18 e S &

eries of negative real numbers along with some 0’ e s and
some 8.

SI];) is a g
For example, for the series 1 — % +Ll_ly... ...

0+ 40+t 4+ and g, =0 !

Lpn 3 5 n =0 E-f-[]ﬁ}‘#_()#_”
Pn = “n+2un|'q" = En_zzlu—n‘ and u, = p, + n-

Theorem 6.5.1. Let Zu, be a series of arbitrary terms and p,

_ Un— Un |
= 3 .

If Sun 18 absolutely convergent, then both ¥p, and g, are conver-

+|u
%"J.qn

i)

gent.

(ii) If Zun i conditionally convergent, then both Ep, and Xg, are diver-

gent.

Proof. (i) Since Yu, is absolutely convergent, both Zun and X|u, are
ntlun n—lun

convergent. But pn = = 2'“ L gn = “_2|ﬂ Hence £p, and Egn are

both convergent.
(i) Since Yun, is conditionally convergent, Zu, is convergent but
Dlu,| is divergent.
Now |un| = 2pn — Un - - (A)
If we assume that Sp, is convergent, then if follows from (A) that
I|uy,| is convergent, a contradiction. Therefore Xpn is divergent.

Again |up,| = up — 2qn - - (B)
If we assume that gn is convergent, then if follows from (B) that
Zlu,| is convergent, a contradiction. Therefore £qy, is divergent.

Note. For all n, p, > 0 and ¢n < 0. From (i) it follows that in an
absolutely convergent series, the series formed by the positive terms alone
and the series formed by the negative terms alone are both convergent

jonally convergent series, the
| the series formed by the negative

i From (ii) it follows that in a condit series
orme. o
¢ rmed by the positive terms alone anc
—— !

s alone are both divergent.
Ir ¢

troduction and removal of brackets.

'Fl i . . il
leorem 6.5.2. Let Yu, be a series of positive
Yu, by grouping it ters

oy o . A
and Y, is obtained from =

Wiry,

\ and negative real num-
Then

m Y \ wree ) S,
t, converges to the sunt s then Yt also converges to s
i) iry Ly ot be convergent

Uy converges, then Mg 1t
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vy = Up41 + U
i) Let wy +u2 4+ Up 02 - H—_— .

Proof. (l) ot S

- e e " 3 ;zlce of natural numberg

" ( ) ' strictly increasing sequence .

Then (ry,) is a8

'+’llrn-tn =1 +1'2+.”+Un’

-+ Uy, = Sra-
s, lims, = S.

Let s, =up +uzt
+
Then t,, = u1 + U2
1
Since Su, converges to th(‘ sun
Tl ence (tn) is a subsequence of the sequence (s,,) and therefore
he sequ

sum S.
the sequence (t,) also converges to the s
In other words, the series Yv, converge

ii) That the converse is not true can be established by the following
example.
Let u, =
Let Su, be obtained from Tun by grouping the terms as
(1-1)4+1-1)+@=1)+ - .
Then Lv, is clearly a convergent series.

_1)nt! the series Yu, is not convergent.
(-=1)"*1. Then

Examples.
1. Prove that log2 = & + 3L + 5-1— 4.

6
The series 1 — 1 + % - 11 + -+ - is convergent, by Leibnitz’s test.
log(1+r)‘1—’2—2+%3—~~ when -1 <z <1.
So]——+—~—+ -=log?2.
Grouping the terms of the serles as (1 -+ - D+GE-H+-

we have t L
he series 34 + L 56 +.

By Theorem 6.5.2, the sum of the series is log 2.
2. Prove that T = L | 1 1
rove that T = Brssteg+o
The serie 1 ;
1€ series 1 — 53+ is convergent by Leibnitz’s test.

1
§+
tar =7 t_ T ]
‘ I o 37 ? ~ -+ when ~1 <2 < 1 (Gregory’s series)
7+

So1-1 l, _ o
3 =z
G’””M“k thf
e me of the se 1
rie; -1 1 1 i
we have the serjes z S as (1 3) + (g = 7) A==
14

,7+9”+

By Theorey 6 5. 2 !h(‘

s1
Hence 1 ) im of th(, series is L
3% 57 4 ” . T

’{l‘,bl'l'allg“lnl‘nl of termg,
Theorey,

n 6.5,3,

' )

an nbmlut,oly convergent ,erlebl

. ed.
#ent and its sum remains unalter

SERIES

[’;()Of Let Yu, be an absolurc-]_y conve
arranged in any manner.
Let the new series be Sv, . They every u is
Let Llun| = 5. Then Z[u,,] +u
and tn + [un] < 2|uy,|.

By Comparison test, E([u, | + 4,

TZent serjes and let the terms be

re-

a v oand every vis a i
S

n 18 a series of positive real numbers

n) 18 conve rgent.
Let £(|un| + un) = s". Then Tu, =g — 4
Since X|un| and Z|u,| + Up) are convergent series of positive real
pumbers, their sums are not altered by re-arrangement of terms.
Therefore Z|vn| = s and (|v, | + Vn) = o

Consequently, v, = s’ — 5. This shows that Ly, I8 convergent and
Yu, = Sun. This proves the theorem.

We state here, without proof, an important theorem of Riemann
about the behaviour of a conditionally convergent series.

Theorem 6.5.4. Riemann’s theorem.
By appropriate re-arrangement of terms, a conditionally convergent
series Yu, can be made

(i) to converge to any number I, or (i) to diverge to ~~. or
(iii) to diverge to —oo, or (iv) to oscillate finitely. or

(v) to oscillate infinitely.

Worked Example.

Prove that the series 1 — § + %1 - % + -
Iearrangedse“es1—‘—i+§—a‘§ F3- T
to 1 5 log 2.

We have lim (14 4+ 1 +---+ 7 —logn) =1

n—oo

Let 1+ §+....+_7_11_10gn=~,,. Then lin ~, =~.

n—xX

yn—11
Letsnzl_éﬂké_%%’mﬁ_(_n i3,

1 e 4
Thonsz”:1_%+§_i+...+_,~,;'1 3
- 1y_ol 41 4
S+ 42414 +_,-1 x4 n

oot y)

= log2n + ~,,, — (1+ %

> Yy, —
=log2n + 4, — (logn + ) = log2 = 2
Pherefore lim sa,, = log2. "
" Sk e — lum 2, = log 2.
S2py = §on + 5t Pherefore sz, - = M2
Sin T oa e

y
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- an infinite series i
W in the form of an infin in twg S
((mb\ + ﬂlbl + 021)(]) 4. (A)

> arTi
the elements of the art

) 4
! (agh + aibo
i (In"l) + ((lzbl) + (12()] + (121)2 <+ (1[()2 + aObz) .

- (®)
o4 lyyln = by + b1 +b2+"‘+bn, Th(\n

aohy

by 4 .1:"1‘ t ”1”‘
1N apt \

Let s, =G0t @ +o2t

s limt, =t

the sum of the first
o =8t 02 = Sgloye On = Spln,...

— : (n + 1) terms of the series (B).
I et 0, DO
Then 0o = soto.

lim sptn = St- Therefore the series (B) is convergent anq

limoy,
has the sum st.

Since the series (B) is a convergent series of positive terms, the -
res remains convergent with the same sum st after removal of brackets
The series (A) is obtained from the resulting series by rearrangemen; of
terms and then by introduction of brackets. Hence the series ( A) remaipg
convergent with the same sum st.

This completes the proof.

Theorem 6.6.2. If ag + a; + a2 +ag+--- and by + by + by + by + .
be two absolutely convergent series with s and ¢ as their sums, then the
series aghy + (aghy + arby) + (agby + a1by + agby) + - -+ (i.e., the Cauchy
product | is absolutely convergent and has the sum st.

Proof. Since an absolutely convergent series remains convergent either by
rearrangement of terms or by introduction of brackets and in either case
{he sum remains unaltered, the theorem can be established by following
the same lines of proof as discussed in the previous theorem.

: .
The following theorem due to Mertens is a further extension of the

e & v it i

previous one and it is stated below without proof.

Theo

rem 6.6.3. Mertens’ theorem.

T -

Y LGrand ¥ b be or i i I
nal, © be tonvergent series with sums s and ¢ respec

ely ar
a0 00 of the series, o X
Ties. say LU an be absolutely convergent, thed
. " ;
" beries Y,

th
’ where ¢ i
noagh, 4 qyh oo 4 agbo
COnve TRent ald 1y LU t ‘ o i “2’)” - + + F
I

.\l)u.ﬂ If DOtl

then the w b
el Lheiy ( nand $b, he non-absolutely convers®”

ay not he convergent,

SERIES

For example, let us consider the series | I I

V2 /3
The series is non-absolutely copveren «
T'h h nvergent, [,ot the series he s .

: » (fauchy produc s e x .
I’” fh( ‘ Vi g Of tne Series \‘_. . Fj a, he ¥ ‘
n=1 n=1 =g
o . — (_1\n—1 1
Then ¢, = (—1) [\/T + 1 1 !

n ﬁﬁ*‘;ﬁ;;.‘
1
rin—r+1) = (%4 )2‘(‘";1 =p) £ (Etly
=7

[<r<n

D
“ for all r satisfvi

2n

= and this implies lime, # 0. The

e | > -
‘(,1‘ Z necessary condition

o0
convergence of the series ¥ Cn 1S not satisfied.
n=1

ng

for

This establishes that the Cauchy product of two non-absolutely con-

vergent series may not be convergent.

If, however, the Cauchy product of two non-absolutely converge

nt

series be convergent, then the following theorem due to Abel establishes
that the sum of the Cauchy product is the product of the sums of the

series.
Theorem 6.6.4. Abel’s theorem.

o0 o0
If ¥ a, and bn be convergent series with sums A and B respe
n=1

n=1

tively and if their Cauchy product §
n=1

then C = AB. 1

First we prove the following lemma.

Up UL +HlUp -1 U2+ TUL L

Lemma. If lim U, = w,limv, = v, then lim

n
Proof. Let Up = U+ ay, Uy =+ 3y Thenlima, =0.lim 3, =0

Unlitun_jvat-tugvn _ (utan)(Et8)Hutan-){erdal e miumay
Witun gt fuien _ (U TPL) AT
- n
Qp31+an -1 I+ -

n
we -+ ::[{l +32+. . _+J’”] +ﬁ[(!1.r()3 e tap |+
(1)

. N . by 3 h+nr v )
B3y Cauchy’s theorem, lim S+ 0. lim “

Since lima,, = 0, the sequence (@) is bounded
YOST v A f
POsitive real mumber & such that o, < & foral

Cherofira 1, Quditan 1datotan?

refore lim "

From (1) 1t follows that

(-

¢n be convergent with the sum (.



