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BASIC CONCEPTS OF DIFFERENTIAL
EQUATIONS AT

Tk

1.1. Introduction.

A relation connecting an independent variable x, a dependent
variable ¥ and one or more of thejr differential coefficients or
differentials is called a differential equation. For examples,

d'Z 5 ‘
x? d_x%-*- x%}%+ (x*- 4)y=0, cotydx- tanxdy= 0.

In fact, a differential equation as given above which involves only
one independent variable is called ordinary, while those involving more
than one independent variables are called partial differential equations.
Partial differential equations will involve partial derivatives. For

examples,
9%  d%u (az]3+ oz

+ =0,
ox* dy? :
There are differential equations, which do not contain the variahles

explicitly. For examples, | -
2

ay _ 47y _
I 5, x dx? 4.

Many of the general laws of Physics, Chemistry, Biology and
Astronomy find their natural expressions in the form of differential
equations.

A total differential equation contains two or more dependent variables
together with their differentials or differential coefficients with respect
to a single independent variable. This may, or may not, occur explicitly
in the equation. In the total differential equation

udx+ vdy+ wdz=0,

where u, v, w are functions of x, y and z, any one of the variables

may be regarded as independent and the others as dependent. Thus,

taking x as independent variable, the above equation may be written
dz

ay az _
. + w =
as / u+vdx dx
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; ighest or,
Theorder of a differential equation is the?lor?}:%é‘ ?li ;r\:ehctggn 2 :aeéz;
differential coefficient involving in it whi g P B o
is the greatest expdnent of the hlghe:st or elre fi i the deHvEE
equation has been made rational and integral as ,

are concerned. Thus

ay xy= x’. is an equation of first order and first degree ;
H’E . .

dy _ -l i is an equation of second order and first degree
dx? y1+ Vx) ,

e

Ay | i econd -degree -
(d 2) = 4 is an equation of second order and s gree ;
dx

: dd
xi=y z(éi) is an equation of first order and secon egree.

Y \ldx

3
Let us consider the equation el 5 Ll + [dx] '

This equation is to be squared to rationalise it and then it can be

easily seen that the greatest exponent of the highest ordered derivative
e

g“b; is two: Hence the equation is of second order and second degree.
X

ltshould be noted that the determination of the degree does not require
the variables x and ¥ to be made rational and integral.

quation, the dependent

e first degree only, and not as
higher powers or products, the equati

is non-linear. The coefficients of a line

3d’

ay d :
dez T (cosx) a¥+ (sinx)y= 0
are ordinary

linear differentia] €quations ¢
the equations

f the second order whﬂe

zgly__ dzl di
(x+ y) de = 4, d‘x*é- x"‘;é+ X(siny)=Q
are ordinary non-lipe

ar equ
respectively,

ations of the firgt and second Ordel‘
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Any relation connecting the dependent as well as the independent
variables will be called the solution or primitive of the differential
pation, if it l:educes the differential equation to an identity when
cubstituted in it. The solution of the differential equation does not
contain any derivative. Thus

y= 2x is a solution of the differential equation —g‘% = 2.

1.2. Formation of differential equations. !/fv -
Consider the relation y= cx, where c is an arbitrary constant.
Differentiating both sides of this, with respect to x, we get

dy _
= €
Eliminating the arbitrary constant from these two, we get the
ordinary differential equation
dy_y
T v’ - B (1)
which is of first order and first degree. Substituting y = cx in (1), we

see that the equation is identically satisfied, shdwing that y= cx is a

solution of the first ordered equation (i). We notice further that the

solution of a differential equation of first order and first degree will

involve one arbitrary constant.
In a similar manner, differentiating both sides of the relation

y= Acos(x+ B), (2)
where A and B are arbitrary constants, fwice with respect to x, we get
%:—Asin(x+ B) s .. (3)
2
and '3—12=—ACOS(X+ B). (4)
X

Eliminating the arbitrary constants A and B from (2) and (4), we
get the second ordered ordinary differential equation
ﬂ + y= 0. ' e, (5)
| dx? Y
Thus (2) is a solution of the equation (5) ; for, (2), when substituted

in (5), reduces it to an identity. As before, we observe that the sol.ution
of a differential equation of second order involves two arbitrary

constants,



1.5. Cauchy’s probiem.

| equation 2 = f &

Consider the first ordered differential equ i (x, y),» .hoé}
general solution contains ohe arbitrary constant. 4 ;
It is sufficient to spec1fy the value y, of the particular solutigy, fé

some value X, of the independent variable x, that i is, to find a poi *I

(Xo, Yo) through which the mtegral curve of the glven equatmn m
pass. .

But this is not sufficient for equanons of hlgher Pk For lnstan""
d?
the general solution of the equation d—xu 0Ois

y= Ax+ B,
where A and B are arbitrary'constants

The equationy= Ax+ B defines a two-parameter family of straigh
lines on the xy-plane. To specify a definite straight line, ‘it is nu
sufficient to specify a point (%, Yo) through which the line must pas.

It is also necessary to spec1fy the slope of the line at the po

(%, ¥,) as given by ' g
¥
< d—yat x= x,, that is, dy. . A
dx dx |, Hg
In the general case of the n-th ordered differential equation. 3
By, dYy, ... 4% o

X, v, .o ’ —_
( Y dx dx * dx ™ 0 (
n3
in order to isolate a parhcular solution, we must have n conditions 5
Y_ (@), Ay (4 e
y yo’dx (d )0 d dxn._-l:: dxn_l 0: at x=x0 . (3}
o d (an-1 .
in which y,, (E%)O RAST ’ (Ex s 1)0 are given numbers. tﬁ

Cauchy’s problem is to

find a solution of the differential equat“’n,
which satisfies the speci B

ific conditions (2).
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1.6. Illustrative Examples.

Ex.d “Eliminate the arbitrary constants A and B from the relation

y= Ae*+ Be™ "+ x2.
From the given relation, we have
g %‘%é Ae*— Be™ *+ 2x
: ii‘.[ x -x 2
‘and . dx2=Ae + Be +2; y—-x"+ 2.

v 2
Therefore —d—%— y=2- x2.
dx |
This is the required eliminant.
_BX. 2. Show that the differential equation satisfied by the family of curves
given by ¢ 2+ 2cy— x 2+ 1= 0, where c is the parameter of the family, is

(1—x2)p2+ 2xyp + x2= 0, where p=%. [ C. H.-1982 ]

From the given equation of the family of curves, we have, on differentiation
with respect to x,

2ep- 2x= 0.

Therefore c=

< IR

Eliminating ¢ from the given equation, we get the correspondmg differential
equation as

=

[

2

+2—xy-—x2+1=0

p P

or, (]—x)p +2xyp+x—0

‘-/f:/ 3. Obtain the dzﬁerentlal equation of the system of confocal conics

2 2

X 'R
+ —=_1,
3a2+7x b2+ A

 in which \ is the arbitrary parameter and a, b are given constants.

Let us eliminate A from the given equation and its first derived equation

22x C/ A 0, where y = —E
a+7\. b2+ A dx




- From the last equation, we have

a2+ A bi+ A
= = k . - IR
= Ty = Ee) «
Putting this in the given equation, we have
2 2
ke — kyy

‘ 1
or, k=-=(y-2xy’).
y y=xy
Substituting this value of k in (1), we get

2,

a’+ A= kx= x—ly,—‘Lx
and b?+ A=—-kyy'=y(y- xy’).
Subtracting, we have

2.,
a’-p?= x—%{j—£+ (xy'-y)y.

Therefore @ - b*)y'= x(xy’'- y)+ vwixy'-y)
= (xy’ - y)(x+ yy').

This is the required differential equation, whose primitive is the give
system of confocal conics. |

Ex. 4. Obtain the differential equation of all circles each of which touche
the axis of x at the origin. [C.H. 1985 ; V. H. 1988

The equation of the circles touching the x-axis at the origin is

x*+ y?- 2ay= 0, where a is an arbitrary constant.

{? Differentiating both sides with respect to x, we get

n f

Y&"’V > 1 2x+ 2yy ' - 2ay = 0, where y’=%
or, a= %.;‘ﬂ_

~ Putting for a in the equation, we have the required differential equatio
as-

x2u y2= 2y(x+yy’)
yl
or,  (x%+y?)y - 2%y = 2y

or, (x3- yi)y’= 2xy.

kw‘xﬂﬂx..,



CHAPTER I
EQUATIONS OF FIRST ORDER AND

FIRST DEGREE

. 2.1. Existence and uniqueness of solution. \

We state the theorem* of existence and uniqueness of solution
ordinary differential equation of first order without proof.

Given a differential equation

dy _
dx—f(xfy), (]]

where f(x, y) is subject to the following conditions :
(@) f(x, y) is continuous in a given fegion G,
() | f(x, v) | £ M, a fixed real number in G,

@) | fox y) = fx y) | < k| y— v, |, kbeing a fixed quantity fo
any two points (x, y,) and (x, y,) in the region G. {

If now (x,, y,) be any point in G such that the rectangle R as gib'
by | x-x,|<a, |y—y,| < b, where b> aM such that R lies whol
within G, then there exists one and only one continuous functi
y= ¢ (x) having continuous derivatives in | x — x, | < a, which satisfi
the differential equation (1) and takes up the value ¢ (x,) = y, when

X=X,.

The condition (i), that is, | f(x, y;)= f(x, y,) | Sk | y,— ¥
provided (x, y,) and (x, y,) are any two points in G, is known
Cauchy-Lipschitz condition. If f(x, y) admits of continuous parti

derivatives and hence ' -a%f * y) ' < k, where k is fixed, then lhﬁ

Cauchy-Lipschitz condition is satisfied.
An ordinary differential equation of first order and first degree.

d
= fe

can always be written as M dx + N dy= 0,

* For proof of this theorem, see Apperdix.
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where M and N are functions of x and y. Assuming that the equation
has a solution, we shall discuss methods by which the general solutions
of these equations can be found in terms of known functions. We
classify these equations according to the methods by which they are
solved. These classifications are '

(A) ‘Equations solvable by separation of variables,
(B) Homogeneous equations,
(C) Exact equations,

(D) Linear equations..

2.2. Solution by separation of variables.
If the equation Mdx+ Ndy= 0 cin be put in the form
() dx+ f(y)dy= 0,

that is, in the separated variables form, then the equation can be solved
easily by integrating each term separately. The general solution of the
above equation is [ fi)dx+ | f)dy=c,

where ¢ is an arbitrary constant. By giving particular values to c,
we shall get particular solutions.

The equations of the form

d
L=f@EW or £()6,Wdx+f,4)0,x)dy=.0
can also be put in the above form and integrated. Sometimes

a transformation of the dependent variable will be used to facilitate
separation of variables.

2.3. Illustrative Examples.
L2 8
Ex. 1. Solve : x* Y 1.

We have, from the given equation,

x2%= 1-y

dx dy
or, — = y
T xz l—y

The variables have been separated.

DE-2



Now, integrating both sides, we get the general solution as

) = - log (1'— y)+ ¢ , where ¢, is an arbitrary constant
X :

or, log -1—_5-1= i: ‘taking ¢, = log ¢

1
or, l-y=ce*

1
or, y=1l-ce*.

Ex. 2. Solve : x\fgdx+ 1+ y)\ll+ xdy=10.
Dividing throughout by VW(l+ x), we get

x dx 1+ y

Vitx' Ny W=0

or, (\11+x—\/-11—x)dx+[\%—y+ \/f) dy=0.

Integrating, we get the general solution as
3 3
%(1+ x)2—2V1+ x+ 2Vy + % y 2= c, where c is an arbitrary constant
or,  (x-2)Vi+ x+ (y+ 3)Vy = k, where k= %
' : ey (2, dy
Ex. 3. Solve : y—x 5= [y Tl
From the given equation, we have

2 dy
y— ay --(g+x) I

or dx__ dy _ l+ 4 d
’ a+x yl-ay) |y 1-ay Y-

Integrating both sides, we get

log (a+ x) = log cy — log (1 - ay), where c is an arbitrary constant.
Thus the general solution is

i (a+ x)(1-ay)= cy. ‘
Ex. 4. Solve : Wdy+ \[1_—7dx= 0

and find the particular solution, ify=0 when x= 1.



If the equation Mdx+ Ndy= 0 can be put in the form 1

dy _ [y
dx_f(x)’

that is, if M and N be homogeneous functions of x and y of g,
degree, then the equation is called homogeneous. In this case,
substitution of y = vx, where v is a function of x, enables us to separf
the variables. By this substitution, we change the variable, such thyy
Y _ oy x5, s
dx dx

Then, after integration, v is replaced by %
Note. %‘i= f(x, y) is a homogenous equation, if f(#x, ty)= f(x, yj|
forall t. |
It can be easily verified that the equations

e ) \ 3 dy 4yNx - 5xVy
ax= 3o (x+y)=log (x"+y7) and 7= =0 N

are homogeneous.

2.5. Non-homogeneous equation reducible to homogeheoﬁs
form.

Consider a non-homogeneous equation of the form
(aix+ by + c))dx= (axx+ by + c2)dy,
that is, dy _ X+ by +

dx  ax+ by+ 2’ - R .(I)s.
. . al bI
in which —# — -
4, b,

This equation can be made homogeneous by the substitution
x=x"+hand y=y’'+ k,
where h and k are constants and are so chosen that ‘
ah+ bk+c,=0 .. @
and ah+ bk+ c; = 0.
The relations (2) determine the constants h and k.

The equation (1) is then reduced to the homogeneous equation
dx’  ax’+ by”’
which can be solved after the substitution y’= vx’ as before.

e T

i




b
f—-‘ -1, then the substitution

a, b,
mx+ by=v,
. dy dv
that 1s, a, + b E‘% dy

will transform the equation to a form, which can be easily solved.

2.6. Illustrative Examples.
Ex.1. Solve: x*ydx— (x3+ yHdy=0.

Here M and N are homogeneous functions of x and y of degree 3.

The given equation can be written as
dy _ _x%y
dx x 3 + y 3
_ ay _ av
Let y= vx, so thatd vt X

Then the equation becomes

dv x% v
vt X = T3 53 3
X x4+ x7v 1+ v
or (v e v?
’ T 1+ 03 1+ 0°
- | 1+ 0° dx
OI', 4 dvz__l
v x

in which the variables v and x have been separated.

o 1 1),  dx.
This gives oy + ZJ dv= - .
Integrating both sides, we get
- _,1_3 + logv= - log x + logc, c being a constanf
or lO _q_x.". = _._...1__. .
' c 3v°
3
X
-1 3

(/p 3
Therefore T= edv =¢

lu
w w



27. Exact equation and its solution by inspection.

If the differential equation Mdx+ N dy = 0 can be expressed in the
form du = 0, where u is a_function of x and y, without multiplying
by any factor, then the equation M dx + Ndy= 0 is said to be an exact
d,'ﬁere_ntzhl equation and its general solution is u(x, y) = c, where c is
an arbitrary constant. |

Some differential equations are easily integrated by mere inspection.
‘Sometimes the equation is to be multiplied by some function of x and
y, so that it can be integrated by putting it in an integrable form. We
give below some typical examples of the differentials of sume functions
which will help us to find the primitive of the equation by inspection.

. . - Xdy—’yd"x: (l .
x-dy"’ydx—d(x.‘/), xz dkx)’
xdy—ydx=_d x) . x dy — de:dflogl)}-

y y : Y L)
c . N
.ydx-x’dy=d tanstZ | s xdy—ydx:d ta‘n“fj,;
2+ i ( y) P+ L x

2 d —yzdx— -‘ﬁ . yde-+ 2xy@=-d _1_];
x’/A sz _d[x),A | xzy4 xyz -

xdy+ ydx _ d{ sin! ).
ey ol

28. General method of solution of eexact equations.

qe ' . ° ﬁ n
We have stated earlier that the ordinary differential equatio

o : N Ch .
Mdx 4 Ndy= 0 will be exact, if there exists a ft'ln?t’mnftct)(rx’ﬂﬁ’t.su
that M dyx + N-dy = du . We now establish the condition ..



for the O’dinad
48 »

./Theorem. The necessary and sufficient confiition
differential equation M dx + Ndy= 0 to be exact is

oM _ N

— S —

dy  ox \
[ We assume here that the functions M and N have con

tinugy,
partial derivatives. ]

If the equation Mdx+ Ndy= 0 -
be exact, then there must be a function u# of x and Y, such thy
Mdx+ Ndy= a total differential of u= du. @Q

du ou

Also, we have du = I dx + 3y dy, o (3)

x and y being independent variables.

Now the two expressions (2) and (3) for du are identical and hent:e:
from (2) and (3), we shall have

dx ay =N ﬂ
fore M _ 3 (0u)_ Fu N_ 3 (3u)_ &u
Therefore dy oy (axj_ dyox and dx dx [ay)— 0xdy
Hence M _ N ’ |
dy ox
if the partial derivatives of M and N be continuous.
~ Thus the condition is necessary. g
To prove that this condition is also sufficient, we are to show that
..M oN ,
3y = ox then Mdx+ Ndy= dy.
Let us put P= f M dx, where, in the integrand, y is supposed 0
be a constant,

Then -gg =M and we have

ON_oM_ &P _ 3 (9P
ox  Jy ~ yax ox|ay|"

dP :
Therefore N = 3y t /). where f(y) is a function of y. -
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Using these values of M and N, we can write

| oP oP all

dy= — L
Mdx+ Ndy axdx‘+ {ay+f(y)}dy
3 =d‘lP+PQ/‘)l, where dF (y)= f(y)dy .

Now, writing P+ F(y)= u (x, Y) , we have

M dx + Ndy = du.
Thus, to solve an equation of the form Mdx+ N dy= 0, we are to

arrange the terms in groups each of which is an exact differential, so

that u(x, y) may be obtained by inspection only. This method has been
discussed earlier. |

If this cannot be done, then we are to test the condition

oM _ oN
_é;= ™ for the exactness of the equation first.

If it be found to be exact, then, to determine the function u (x, y),
we use the relation

du |
ax_M’

which, on integljation, gives u = _[ Mdx+ f(y), where f(y) is a func-
tion of y.

‘Now, to determine the function f(y), we equate the total
differential of u (x, y) to (Mdx+ Ndy).

We see that all the terms of u(x, y) containing x must appear in
I M dx . Hence the differential of this jntegral with respect to y must
have all terms of N dy which contain x. Hence the rule for solving an
exact equation of the form Mdx+ Ndy= 01is

Integrate the terms of M dx considering y as constant ; then integrate
those terms of N dy which do noft contain x and then equate the sum of these
integrals to a constant.

Ndy=0,iffM and N be homogeneous

Cor. In the exact equation M dx + and. :
1), then the prinutive can be obtained

functions of x and y of degreen (#— 1), ¥
without any integration and the primitive 15
Mx+ Ny= constant .

oM _ oN . waip,
Since the equation is exact, we have £ = ox i /( ) |

DE.3




e |
Again, since M and N are homogeneous functions of df.’-gree
n, we have, by Euler’s theorem,

oM
oM —=nM (2)

x_i_);er dy
dN oN
= nN -
and x5 +y 3 n (3
Let u= Mx+ Ny, so that we have
ou oM oN _ M aM’b 1
5;=M+xax+yax—M+xax+yay y (1)
= M+ nM, by (2)
= (n+ 1) M.
Similarly, by (1) and (3), we get
©ou _
ay—(n+ 1)N
Therefore du= %%dx+ g—;dy= (n+ 1)(Mdx+ Ndy).

1 1 . |
e o 1du— — 1d(Mx+Ny),n;‘!: -1.

Thus the primitiveis Mx+ Ny = constant .

‘Hence - Mdx+ Ndy=

2.9. Integrating factors.

Sometimes it is seen that an equation, as it stands, is not exact but
it can be made exact by multiplying it by some function of x and ¥
The function, which multiplies the equation to make it exact, is called
integrating factor.

Let Mdx + Ndy= 0 be an ordinary differential equation and

_ Mx+ Ny= 0.

dy__M_ .,y

We have T N> + < |
which can be integrated easily and in this situation no integrating
factor is necessary.

wTheorem. The number of integrating factors of an equa'ﬁb”
Mdx+ Ndy= 0, which has a solution, is infinite. %

Let u (x,y ) be an integrating factor of the equation M dx + N dy =0
so that nw(Mdx + N dy)= du. &,

D
ol
1 )




— X _ ) . '
once ¥ (x, ¥) = c is a solution of the equation.

it f(”) be any function of u, then
pf) (Mdx + Ndy)= flu) du .

Now, the Fight—l}and expression is an exact differential, since’
) du can easily be integrated to give ¢ (1). Thus the solution of the
equation 1°

O ()= c

showing that W () is also an integrating factor of the equation

Gince f (1) i§ an arbitrary function of u, the number of integrating
factors iS infinite.

210. - Rules for finding integrating factors.

It is seen that an integrating factor can be found by inspection in
simple cases. But in most cases when integrating factor cannot be found
by inspection, the following rules are used to find it. For that, we
consider the differential equation M dx+ Ndy= 0, in which

oM 3N
—_— ¥

oy  Jx
vRule L. If Mx+ Ny# 0 and the equation be homogeneous, then

1 : . . .
M+ Ny is an integrating factor of the equation Mdx+ Ndy= 0 . 2

We have M dx+ Ndy

= %{(Mx+ Ny) (Elf—+ -d-yy)+ (fo Ny) (%_ éy-]}

y
= %I:(qu. Ny)d {log (xy)} + (Mx ~ Ny) d(log;-ﬂ A )
Since Mx+ Ny# 0, we have, dividing both sides by (Mx + Ny),
Mdx+ Ndy 1 { } iMx=Ny,(1.2). .. @
Mrs Ny = 29 198 @]+ 3 Ny 4| 8y | (

Mx— Ny .
Now, (Mx + Ny) is homogeneous ; hence A—Am}yl is also

h ) X xl.
Omogeneous, and is equal to a function of ; + say f (y)



Therefore (2) becomes

“Mdx+ Ndy _ { } 1% x
Mx + Ny 41 1og () | + ?-f[y Jd(logy)
1

i1 1 X s
_2d{log(xy)}+ZF(logy]d(logyJ, el

since f[y] f{elogy} F(logi—).

The right-hand side of (3) is an exact differential.

I\Jp—h

1 : : .
Hence we see that m is an integrating factor of the equatiy

y
&gﬁﬁle II. If Mx— Ny# 0 and the equation can be written as
{f(xy)]ydx+{1?(xy)]xdy= 0, a1,44

then is an integrating factor of the equation.

L RN
Mx - Ny
Since Mx—- Ny=# 0, dividing both sides of (1) by (Mx - Ny)
we get
Mdx+ Ndy 1 Mx+ Ny : 1 - X
Mi— Ny — 2Mrc- Ny d{ log (xy) |+ Ed ( 10g~y— .
Now, we have M= | f(xy)}y and N= {F(xﬁ)}x
Therefore .
log %
(23
= % v | log (xy)} df log (xy )|+ % (logi),
. (4)

Mdx + Ndy____ 1f(xy)+ F(xy)
Mx-Ny ~ 2f(xy)- F(xy)

d{log (xy)}+ %
= % 0(xy)d| log(xy)|+ %d(lo )
d

since ¢ (xy)= ¢{e8™)| = y|iog (xy)].
The right-hand expression of (4) being an exact differential
1 : : :

Mx - Ny Is an integrating factor_ of the equation.

Note. If Mx- Ny= 0 identically, then %:-‘ﬁ and the equation

Mdx + Ndy= 0 reduces to xdy+ ydx= 0, whose solution is xy = ¢.




—_—

| M AN
/ ° I = .
Aule I If [ -‘axj be a function of x alone, say f(x), then

[0 4% is an integrating factor of the equation. a0

{et p be an integrating factor of the equati(;n Mdx+ Ndy= 0,
<0 that (U-M)dx'i-(uN)dy:O
;s an exact differential equahon

4

Hence the condltlon (MM = —— ( uN ) must be satisfied.
: d a p)
: M 9 _E M oN )|
Thls glves ay N ax l‘l( ay ax 0 (5)
Now suppose W is a function of x only, so that gﬂg 0.
Y
Then (5) gives
du_ 1(oM _0oN -

Now, since W is a function of x alone, the right hand side of (6) is
a function of x only.

— 1 (oM _ oN
Let us put N[ay axJ f(x),

so that (6) becomes % = f(x) dx,

d
which gives M= e‘“(x) i

- Thus J- fG) @ oo an integrating factor of the equation.

Note. e'[ 5 is an integrating factor of the equation -7~ &, Py= Q, where

P and Q are functions of x only, since the equation ;:analt\); w;;\t’tm as

(Py- Q) dx+ dy= 0, so that M= py-Q, N=1 arid —_(_@—_ ax) #
which is a function of x alone

Rule IV. If [BN aai;/l ) be a function of y alone, say o (y ), then

Jowryay . . _ y
e’ Y is an integrating factor of the equation

The proof is similar to that in Rule TIL



Rule V. If the equation be of the form

¥y’ (my dx+ nx dy)=0; a, b m n being constants,

_ _ % b— 1 . . . |
then xFm=a- 1 ykn , where k has any value, is an integrating fact,

of the equation. |
Let us assume that x”y 7 is an integrating factor of the equatigy,
x*y' (my dx+ nx dy)= 0
Now xF*ayd+b my dx + nxdy) is an exact dlfferentlal |
if (mxP*eyat be1 dx + nxP*et 1y‘?+ bdy) be an exact differentia]
This gives m(g+ b+ 1)=n(p+a+ 1)

q+b+1 p+a+1

oF, = = k, say, where k is any number.

TthEfore p= km — a- 1 zn3 g= kn — b— 1.
Thus we see that x "~ 71 ykn-b—1

, Where k is'any nuinber,is
an integrating factor of the equation : '

xy? (mydx+ nxdy)= 0

In this connection, it should be observed that %x kom yk" , k#10
is the integral of the exact differential

x =1y - Y(my dx + nxdy).

If the equation can be put in the form

x" y "(m,1 de+r1xd1/)¢v21/2

then a factor, that will make the first term an exact differential, is

xklm TiAyr7al y klnl—x?l-— 1

and a factor, that will make the second term an ex

x kem=ay- 1

(myydx+ n,xdy)=0

act differential, i

koo - hy -
y -l opare ki and k; have any value.

These two factors are identical, if

kimy = ay = k, m, - a; and k1 m-= b= kyn,- b,.

These easily determine ki and k,, provided m, ny— mym# 0.



2.1

1 {llustrative Examples.

dy . ax+ hy+ g
dr ¥ hxx byt o0

gx. 1 Solve - :

The given equation is
(hx+ by + f)dy+ (ax+ hy+ g) dt= 0
8 ax dx + bydy+ h(xdy+ ydx)+ gdx+ fdy= 0

2 2 -
or, ad[éz—)"' bd(%)-‘. hd(xy)+ gdx+fdy= 0

i
or, d{-i(ax2+ by2)+ h(xy)+gx+fy},—_- 0.

Integrating, we get

1 2 2
S (ax +by’)+ hxy+ gx+ fy+ c=0, where c is an arbitrary constant.

 Ex. 2. Solve : (1- x) 2 oy= x- 2.

-

The equation can be written as

(1- x*)dy— 2xydx= xdx- x*dx

2 4
2y i gl % — -
or, d{(1 x)y|—d(2 4).
Integrating both sides, we get

2 4
y(1-x?)= 3% -1x%+c.

xdy— ydx _ 0,

given that
xi+ vy’ 8 :

Ex. 3. Solve xdx+ ydy+

when x= 1.

The given equation can be put as

x’ ]1_2 Y _..0
d(—z—}+ d. 2J+ d(tan' i

Integrating, we get

1,2, .2 -1 ¥4 ¢=0,
2(x +y)+.tan .

Where ¢ is an arbitrary constant.

Now, it is given that y = 1 when x=1.

(1)



S ———

Putting these in (1), we get 1+ tan" "1+ c= 0, giving c= -~ 1~ %n.

Therefore the required particular solution is

1 2 2 "E:' E
2 (x"+ y7)+ tan Y 1+4

Ex. 4. Solve  (x*- 2y)dx+ (y*- 2x)dy= 0, given that y= 5
- when x=0.

The given equation can be put as
x*dx+ y'dy- 2(ydx+ xdy)= 0
or, dij¢x’+y”)|-2d(xy)=0.
Integrating, we get

(x4 y*)- 2xy= ¢, where c is an arbitrary constant.
Now, we have y= 2 when x= 0.

Therefore B c.

3
Hence the required particular solution is
x>+ y =8+ 6xy .
Ex. 5. Exgmine whether the equation

(4= 2vy— y*)dx- (x+ y)dy =0
is exact. If it be exact, then find the primitive,

Here M=0a’- 2xy- y? ang N= _ (x+ y)?2.

We have iM-—: -
dy

Hence the equation is exact.

The primitive of the equation is

oN
2x— 2y and e - " 2(x+y).

I(az- 2xy - yz)dx+ f(— yz)dy_—. 0,

Y is considered as constant in the first integral

Note. The first integral s I Mdx and the second integ

ral is
I ( terms not containing x in N)

dy.



2.12. Linear equation.

An equation of the form
2 | py=
dx + Py Q ’ P (1)

where P and Q are functions of x only ( or constants ) is called a ling,, |
equation of first order in y. The dependent variable as also its derivatiy,
in such equations occur in the first degree only and not as highe
powers or products. |

If both P and Q be constants, then the variables can be easily
separated. This will also happen if either P or () be zero.

Let R be an integrating factor of the above equation. Then the left
hand side of the equation |

ay =
R+ RPy= RQ

is the differential coefficient of some product. Now the first term |

R % can only be derived by differentiating Ry.

We put I
dy _ 4 _pdy 4R |
Ry & ROY= G (Ry)= R+ Yo

Therefore RP = %

Integrating, we get logR= _[ Pdx, so that R= el P s an
integrating factor.

Now, multiplying both sides of the equation (1) by this integrating |
factor, we get '

dy [ pax [Pax _ ] Pax
= + Pye = Qe

or, d( yefpdx ): Qedexdx.
Integrating, we get the primitive as
yeI e IQBI Pdx ax + ¢, where c is a constant.




V ‘

An alternative form of the solution of the equation (1)

,_Q thatis, Pz=Q—- P
LetZ" P Y Q Y. & W (2)
L 4(Q|_dy_d Q

meﬂ'g}"dx P dx ~ dx - (Q- Py), from (1)

d

- Ex—(%)-— Pz, from (2).

dz d . ,

Therefore dx+ Pz = EE[%J, which is linear in z.

[ Pax

The integrating factor of this equation is e’ ** . Multiplying the equation

P dx d
by the integrating factor el 7, we get oo ( dex) ol Pax l;i [%J

(A
v 70 70 £ (8] s
X

Puttlng for z, we get an alternative form for the solution of the equation (1)

as g —Yy= e—IPdXI:J‘ '[ded(%)+ C:|
Q_ 'Ipd{jej P& g (QJ+ c:l.
Note. Sometimes an equation may be linear in x, where y is the

mdependent variable. The form of such an equation is .

g_;'*}' Pix= Q1

Here P, and Q, are functions of y only ( or constants ).

The general solution, in this case, will be
xel 4= I Ol P dy + c.

or, Y= p

5}/3'/ Equatidn reducible to linear form.

Let us consider the 'ecjuation Zy + Py=Qy" which is known as
f x alené or

Bernoullz s equation, in which P and Q are functions 0

Itcanbeputas y—n%_*_ Pyl—ﬂ—,_- Q.

ht to the linear form by the substitution

This equation may be broug
- nd
Y=, sothat 2= (1= MY e

'DE«'



Thus the equation trarisforms to

dv

P = n)Pv=(1-n)Q,

Ix + (1= n)Pv=( )Q |
which is linear in v, its integrating factor being e a-n[ pax

The solution is given by
e Péx_ (1- 71)_[ QE(I"")I Péxdx+ c

Then we put y '~ " for .

2.14. - Method of variation of parameters.

Consider the equation % + Py=Q, o g S (1)

where P and Q are functions of x not involving v.

If the function Q be zero, then the integral of the equation cap
easily be found and will be found to be
| y=cel P
- where ¢ is a constant.

When Q is different form zero, we assume the same form for U,
but do not restrict ¢ to be constant and let it be u, a function of x,

so that y=ye P | .0
“From (2), we get

dy _(du_ - [ Pax
B;—-(dx Pu)e

and hence from (2) and (1), Z—;‘- e‘-fpdx: %4' Puelra_ Q,
au _ [ pax

so that M Qe ,

which gives u=J‘QeIde'dx+ C, i cov e (3)

‘where C is an arbitrary constant.

Thus putting (3) in (2), we get |
y=Ce—Ide+e~IdeIQeJ‘dedx. i pa st

(4) is the primitive of the linear differential equation (1).




1. This method of obtaining an inte

te * . . ral Of
No 4 then treating the parameter ¢ in t}? " the equation when Q is

: , e in
0,8 0 zero, is called the method el tegral as actually variable,
when ontly used in the solution of linear e
. u
is ffeql;nd will be discussed later. Anations of second and higher

or derS .r .
ote 2 Bernoulli’s equations can also be g0

R 3 Ved .
f al_ameters after reducing it to linear form. by the method of variation
of P

[llustrative Examples.

Y. 4x 1
dx” Z+ 177 W@y

2.15-

Ex. 1 Solve :

The equation is in linear form in y.

4x 1
P= and O= ————.
Here . 2+ 1 Q | (x2+ 1)3
i I 24x dx 2
Integrating factor is e T S Y 2y 12,

Multiplying both sides of the equation by this integrating factor, we get

P+ 1)2%+ dx (2 + Dy= xz_i .
1
or, dly@+ 1)?)= 7y 1fdx.

Integrating both sides, we get

y O + 1)°= tan "~ 1x + ¢, where c is a constant.

-1 d
> - _ -tan yy2 _ .
Ex. 2 Solve: 1+ y+ (x—e™ ™" ¥)5 =0

The equation can be written as

which is linear in x.

1
Here = and Q= 2
P 1+ 2="1y Yy
Integrating factor is |
|
I Pdy 1 +1y i tan IV_V

e =e =€




R
Multiplying both sides of the equation by this inte R

grating factor,
tan™ 1y e e

dx tan 1y e Y 1

— + - X = 3

dy 1+ y 1+ y

-1 l
tan y)= dv .
or, d(x e 1+ 1/2 Y
Integrating both sides, we get the general solution as
-1
xet® Y= tan 1y-+- ol

Ex. 3. Solve : %+ y cosx=y" sin2x.

We divide both sides of the equation by y " and get
-n f_iz 1-n — .
y oty COs X = sin 2x .

e e -n Ay _dv ,
Puty'™ "= v, so that (1- n) y " ;1%:_5 and the equation becomes
1—1nd_z+ v Cos x = sin 2x

or, g—z+(1——n)v cosx= (1- n)sin2x.

Integrating factor of this linear equation in v is

I(l—n)crsxdx_ (1-n)smnx
The solution of this equation is thus
ve”'"’“”:f(l—n)e”'")smx sin 2x dx . (1)

Now, to evaluate the right hand side integral, we put sin x= z, so that
cosx dx= dz. '

Therefore (1 - n)jze(l""’sm’smx cosx dx=2(1- n)fe‘lf")zzdz
[

1 - -
=2(1-n) izl ” el "’Z—-_‘-llvn e ")zdz}
, 1 -
= 2ze(! ")Z—Z-I_H el=mzy ¢
= 2 sinx (1= sinx_ 1 2n p (1= m)sinx .

Putting v=y '~ "in (1), we get the general solution of the given equation
as

1- - . . _ i 2 1- siny “
y ~"ellmmsinx_ 5 giny el ."’5'“———-—-1 ne( n)sin¥ ¢

or, y'""=2 sinx-

‘ .
+ Ce(n— l).smx"




CHAPTER III /

EQUATIONS OF FIRST ORDER BUT
NOT OF FIRST DEGREE

3.1. Introduction.

- In this chapter, we consider those differential equations, whick

o dy .
involve % in a higher degree than one. For brevity, E.% IS usually

denoted by the symbol p. Let us consider an equation of the first order-
and n-th degree in p of the form '

pn_i_Plﬁn—l_*.Pzpn'-z_*_ ............ +Pn_1p+P=O’V
where P, , DA, ity , P, are functions of x and y.

We shall discuss three special cases of the above equation, in which
it is
(1) solvable for p. (ii) solvable for Y,  (iii) solvable for .

3.2. Equations solvable for p.

Let us suppose first that the left hand side of the above equation
can be expressed as a product of n linear factors in p. that is, the above
equation can be put in the form

F(x.y,¢)=0,F(x,y,¢)=0, s Fa(x,y,00)=0, ...(1)
where ¢, ,c,,...... ,C, are constants,

All possible solutions of the above equeition will be then included
in the relation

F;(x,y,cl)Fz(x,y,cg) ...... Fn(x,y,gn)zo, ' ... (@



as the given equation is onl f the fi

qow, 85 R on y of the first order, w

Jy one axb}hary (ionstant In its general solution. We a]soec;l‘;:;peCt

o “pere is NO oss of generality, if the arbitrary constzze
tants

...... ¢, be replaced by a single arbitrary constant c, because

o parﬁcular so}utlon which is obtained from (1), can also b
aine 4 from (2), (ifc ,cp-v.nn , ¢, be all replaced bylc ) by givin‘3
. gitable value to c. 2
Thus the general complete primitive of the above equation is
Pl(x‘,y_,c)Pz(::,y,c) ..... .Fa(x,y,c)=0
here € js any arbitrary constant. | 7 ,

_Note.’ The degree .of 14 in the given equation is the same’as that of ¢ in
its general complete primitive.

3.3. [llustrative Examples.
Ex.1. Solve: p*+ 2xp—3x7=0. ' [ C. H. 1987 ]

The equation is a quadratic in p.
This equation can be written in the factorised form as

(p-x) (p+3)=0.

The first factor, when equated to zero, givesp— x= 0, that is, %Ii = x ,whose
3 X

solution is 2y—-x*+ =0
The second factor, when equated to zero, gives p+ 3x= 0,

. d
that is, -&% — — 3x, whose solution is

2y + 3x*+ €= 0.
Hence the general solution of the above equation is |
(2y—-x*+¢) (2y+ 3x2+ c)= 0, where ¢,is an arbitrary constant.

Ex. 2. Solve :
p3-(x2+ xy + yz) p2+(x3y+ xzy_2+ xy3) p—’x3y3= 0.
[V. H. 1992 ]

On factorization, the given equation becomes
(p- x)(p— 2y (P~ y?)=0.

The first factor, when equated to zero, gives
p—x*=0, which has x°— 3y + &

o, gives

The second factor, when equated to zer
' 1.2

=-X
p—xy=0, which has e?

The third factor, when equated to zero, gives
p-y:=0, which has xy+ y&+ 1=

=0 asits solution.

+ cpy=0as its solution.

0 as its solution.



5.4. Equations solvable for y.

If the differential equation be solvable for y, then it may be putin
the form |

y=f(x, p). oo (1)
Differentiating both sides of (1) with respect to x, we get an equation

of the form
_ dp
p= F(X, p: dx)

This is an equation in two variables ¥ and p and it can be solved |
to get a solution of the form |
6{x, pc)=0. o @

Eliminating p between (1) and (2), we shall get the required solution,
which will be a relation connecting x, ¥ and an arbitrary constant ¢

Somet'imes we write down the solution by expressing x and ¥
separately as functions of p, treating p as a parameter. This happer
when the elimination of p between (1) and (2) cannot be easily doné

3.5. Equations containing ro x.
Consider the equation of the foom f(y, p)= 0.
If it be solvable for p, then it can be put as

di
= 0= F(y).




@
/ , [ 2oy

F(y) o

gts 5° gor *°
e other hand, if it be solvable for y, let it bé |
on | s
y=f(p)-
i can be easily integrated by the previous method.
, B quaﬁons solvable for x. | . | -_ B
 the differential equation be solvable for x, then it may be put in
the fOfm .
x=f@ p) crag -ee0 (D)
Differentiating both sides of (1) with respect to y, we getan equation
1_ dp '
of the form p‘_ F(y' P dy |’
This is an equation in two variables ¥y and p and it can be solved

f the form
6(y, p. €)= 0. AU V)

veen (1) and (2), we shall
on connecting X,

to get @ solution O

betv get the required
y and an arbitrary

Eliminating P
11 be a relati

solution, which wi
constant C.

In case the elim
expressed in terms

possible, X and y may be

ination is not easily
meter.

of p, treating p a3 a para

tions containing no Y.

37. Equa
quation of the form f(X; P y=0.

Consider the e

If it be solvable for p then it can be put as
d
p= i — F(x)
and its solution 1s j F(x)dx=Y+ ¢
e for x, let it be

On the other hand, if it be solvabl
X = f( p ) =

grated by the previous method-

This can be easily inte



3.8. Illustrative Examples.
Ex. 1. Solve : y+ px=x'p?
" The equation is solvable for y and is written as.

y:-—px"‘ x4p2. (l)
Differentiating both sides of the equation with respect to x and wriﬁ_ng p

fdr % , we have

p=-p- P, x'2p ap pax’®

dx dx
P dp
or, 2p + X = 2px (2p+ xdx)

4p )1 2px® )=
or, [2p+ xde(l 2px ) 0.
Therefore 2p+ x%: 0, if 1- 2px’# 0.
Thisgives de+‘—12=»0.
A P
Integrating, we get
logx*+ logp=logc

or, px*=c, where cis an arbitrary constant
c
or, p=_r. 2202359 (2)
Eliminating p between (1) and (2), we get the general solution as
. c £ &*
y X2+ x P
or, xy=c- ¢ 3)
In case 1- 2px*= 0, we have P= 3 X " and putting this value of p in the
given equation, we get
- -3 (3T a1y
or, x*y+ 1=0,



3.9. Clairaut’s equation.

A differential equation of the form

y=px+ f(p)
is known as Clairaut’s equation.

To solve this equation, we differentiate its both sides with respect
to x and obtain

p=p+ {x+f’(p)}é§,

from which we get either %E = 0, that is, p= ¢, a constant

or x+ f"(p)= 0, a relation between x and p.

Eliminating p from the given equation and p= ¢, that is, putting
p= cin the given equation, we get the complete primitive as
y=cx+ f(c).
This is the general solution of the given differential equation.

Eliminating p from the

given equation and x + f* (P)= 0, we get
a relation between x and y ’

On differentiating the complete primitive with respect to x, we get
p=c
and eliminating ¢ from y=cx+ f(c),

we get the corresponding differential equation

y=px+ f(p).
Evidently, y=cx+ f(c)
is a solution of the equation.
If now we look to the other relation between x and y which is
obtained by eliminating p between
y=px+ f(p) and x+ f" (p)="0,

we see at once that it contains no arbitrary constant and it cannot be
deduced from the general solution by giving any particular value to
the arbitrary constant. Yet it may be seen to be a solution of the



_p,since X+ f' (@) =0 and %is finite.

The second solution of the equation, which is derived from the
quation in the above manner and which is not included in the general
_JJution, is called the singular solution of the equation. |

Note 1. The relation b.etween the two solutions, if both exist, can be
| dicated by some geometrical consideration. The first solution

y=cx+ f() .

represents a family of straight lines. If this family of straight lines has an-

envelope, then it can be found by differentiating both sides of the
equation (1) with respect to ¢, which gives _

0= x+ f"(c), . )
and then eliminating c between (1) and (2).

 Now, elimination of ¢ between (1) and (2) is precisely the same as that
of p between

y= px+ f(p) and 0=x+f"(p). |
Thus the curve given by the latter is the envelope of the family of straight
lines represented by the general solution, if these lines have an envelope.

Note 2. It can be easily shown that the solutions obtained above are
distinct ; for, let

U= y- cx— f(c) and V=y- px= f®),
where, in V, the value of p is given by x+ ¥ (p)= 0.

ou ou_ . oV _ v _ _
Here -é;—;—c, ay_l,ay—land Pl
Now au.i‘{__a_u-éz

cchoconl = -C,
ox dy Oy Ox P

Which does not vanish identically. It vanishes, only when the'equatior_ts
=0and V=0 are taken simultaneously. Hence the two equations U= 0
and V= 0 are independent of one another.

The solutions are therefore distinct from oﬁg another.




3.10. Equations homogeneous in x and .

This type of equation can be put in the form

F (é}i, 1): 0, thatis, F [p, 1): 0.
dx x' X

The case, in which it is solvable for p, has already been discusseq

If it be solvable for % , then it can be put in the form
Y_ f(p), that is, y= x f(p).
x

Differentiating both sides with respect to x, we get
sy 4
p=f@)+x f 0 5

or dx _ f'(p)dp
’ x p-f’

in which variables have been separated and can be easily integrated.

Then the p-eliminant of this integral and the given equation will
be the complete primitive.

3.11. Lagrange’s equation.
Consider an equation of the form
y=xf@E)+ o),
which is an extended form of Clairaut’s equation.

Differentiating its both sides with respect to x, we get
P=f®)+ 12 £ @)+ 0 @)} 22

o,  p=f®)=1[(xf"@)+ ¢'(p)}g§

o, Z,xf®)_ 0@
dp f@)-p p-fp)
which is a linear equation of the first order in x. This can be ezl

integrated and the p-eliminant of this integral and the given equat®
will be the complete primitive. egra anc.the g

Note.- Sometimes a change of variable js t be i iven equat
. lied to a g1v ;. wil
to reduce the equation to Clairaut’s form i ended form. This
be illustrated through examples. ? formn o to ity exfended



trative Examples.

12 Lo |
i in the complete primitive and ‘
,, Obtain e and the singular solution of th
Exe = \l 2 f ¢
o L yEpxs Nlbpt [C. H. 1987 ]
L , equation 1 in Clairaut’s form.

Diﬁerentiating both sides of this equation with respect to x, we get

i p, __p dp
P=P* ¥ ax ™t iy 57 dax

dp _
or, [’“’ i+ p? } a0

) d .
Therefore, either Egr. 0, that is, p= ¢, a constant o 1)
OT' X+ : =0, th&tis,x:--L.
1+ p? i+ p? N V)

Fliminating p between the given equation and (1), we get the complete
solution as

y=cx+ Vl+ c?*.
Eliminating p between the given equation and (2), we get the singular

solution as
2 _ 2 : 2 y
x*+ y2=—H——5+ %4. V1 + p?| =1.
. 1+p 1+ pz'

Note. Notice that the complete primitive represents a family of straight lines, which
touch the circle given by the singular solution at different points for different values
of the arbitrary constant.

Ex.2. Reduce the differential equation y = 2px — py to Clairaut’s form
by the substitutions y*>= Y, x= X and then obtain the complete primitive

and singular solution, if any. [C. H. 1986 ]
We substitute y2= Y and x= X, SO that we  have
2py= dy and dx= dX, in which we write p'='éi' Therefore 3 .
dx £=aa, MW dx dX
Let P=ﬂ' Hence£—=p.

dX 2y

Thus the given equation reduces to

Cpe PPl

d 2y w7
or, Y= PX- 1p2% ks (1)
7

This equation is in Clairaut’s form.

= L ————————————



Differentiating both sides of (1) with respect to X, we get
P=P+ ( P) L

dX
dP 1
- = 0.
or, X ( X P )

Therefore, either ﬁ = 0, which gives P= C, a constant SRR

or X-1P=0, which gives P= 2X.

o
Eliminating P between (1) and (2), we get the complete primitive a5
Y=CX-1C*.
Restoring the values of X and Y, we get the primitive as
yi=Cx-1C°*.
Ehmmatmg P between (1) and (3), we get the singular solution as
Y=2X*- X*=X*,
Restoring the values of X and Y, we get the singular solution as
y?’=x?, that is, y= * x.
Ex. 3. Solve : x*(y-px)=piy. [ B. H. 1990 ]
Let us put x*=u and y’= v,
so that 2xdx= du and 2ydy= dv.
Therefore ydy_do
. x dx du
y,_ dv_
or, : P, P (say).

Putting for P in the given equation, we get

: 2 2 ;
z[ P;: J=§_’P2'y

or, y’— Px*= p?
or, v—- Pu= P?
or, v= Pu+ P?, which is in Clairaut’s form.

The complete primitive is thus

v= cu+ c’, cbeing an arbitrary constant.
Restoring the values of u and v, we get
yi=cx?+ c?.



CHAPTER IV
SINGULAR SOLUTIONS

-~
4.1. Definitions.

Q;Sometimes a solution of a differential equa.tiOn.can. be found Withg,
involving ‘any arbitrary constant.and which is, in general, not ;
particular case of the general solution. Such a solution we got Whep
we solved equations of Clairaut’s form a-nd we named it a singy,
solutioﬁ) Now we shall attempt a general discussion on such solutign

The discriminant of an equation involving a single variable is
simplest function of the coefficients in a rational integral form, The
vanishing of this discriminant is the condition that the equation hgg
multiple roots. Thus the discriminant of the quadratic equatio
4?4 bx+ c=0 is (b*— 4ac) and b*— 4ac= 0 will be called the
discriminant relation. In the case of a general equation, such as
Fx,y,o=0,in which a is a variable and -the coefficients are
functions of x and y, we obtain the discriminant by eliminating ¢
between F= 0 and %Fx-= 0. This eliminant is the simplest rational
function of x and y whose vanishing ensures that the equation has
equal roots for ¢ and is called the o-discriminant relation or simply |
o-discriminant of F.

Let us consider the differential equation

fx ¥, p=0, |
whose general solution is ¢ (x, y, ¢)= 0, ¢ being an arbitrary constant.

The c-discriminant is obtained by eliminating ¢ between
¢(x,y,c)=0and—g%=()_ : (l)i

The p-discriminant is obtained by eliminating p between the

equations fx,y,p)=0 and -35= 0. @
Evidently, the c-discriminant is the locus of the points fgr _eaCht?i
which ¢ (x,y,c)= 0 has equal values of ¢ and the P'discrummull 165
the locus of the points for each of whichf (x, vy, p) = 0 has equal w(l) ;re
of p. The equation f(x, y, p)= 0 and its solution ox, Y €= be
of the same degree in p and ¢ respectively and hence if there
p-discriminant, then there must be a c-discriminant.




/

1.2 EnVClOpe-

: giviﬂg ¢ .all Possible values in ¢ (x, y, ¢)= 0, we obtai

rves, ir\fi.mte in n_urnber, of the same kind. Let’ these su?cls . 'Set

values of ¢ differ by infinitesimal amounts. When these curvzss;‘;z

drawry the Curves corresponding to two consecutive values of ¢
called consecutive curves ) intersect and the limiting position of these
oints of intersection includes the envelope of the system of curves

The envelope of the system is the locus of points of intersection of the

consecutive curves of the system obtained by giving different values

ocind(x, Y, c¢)= 0 and is obtained by eliminating c between

of cu

d(x, y,c)=0 and —g—@= 0.
c

Envelope is thus a part of the locus of the c-discriminant relation,
since, in the limit, the ¢’s of two consecutive curves become equal.

Again, the envelope is touched at any point on it by some of the

curves of the system. Therefore x, ¥, p(= %J for any point on

the envelope are identical with x, ¥, P | = 4 of some point

curves of the system. At the points of ultimate intersection
of consecutive curves, the p’s for the intersecting curves become equal.
Thus the locus of the points where the p’s have equal values, will
include the envelope. The p-discriminant relation of f(x,y,p)=0

contains the equation of the envelope of the system of curves given
by ¢ (x, y, ¢)= 0 and is also 2 solution of the differential equation

f(x,y, p)=0. Thus both the p-discriminant and c-discriminant
relations contain the equation o the envelope. This is the singular
solution and this satisfies the differential equation. This does not contain
‘any arbitrary constant and cannot be deduced from the complete
primitive by giving a particular value to-the arbitrary constant, except

in some special cases.
As an example, let u

on one of the

s consider the differential equation

gxp?= (3x - a)"

.. dy 3x—14
This gives ;= "o\x

a
or,  dy= [%\5?- ‘27;') 2



N
Integrating, we get the general solution as

3 1 : i
y+ c= x2- ax?, where c is an arbitrary constant

or, (y+ C)2=x(x—a)2' '(1)
Now, let ¢(x,y,c)=(y+ c)?-x(x-a)’=0.

Therefore %‘g= 2(y+c)=0.

Eliminating ¢, we get the c-discriminant as x (x— a)*= 0, Q
Again, from the given equation, we have
f(x,y,p)=4p’-(3x-a)*=0,

x(3x-a)?=0. . (3

From (2) and (3), we have the common factor x for the
c-discriminant and the p-discriminant and hence x = 0 is the singular
solution. This satisfies the given equation and does not contain any
arbitrary constant. Notice. further that the singular solution x= 0
cannot be found from the general solution (1) by giving any particular
value to the arbitrary constant.

Observe that (x-a)?=0 of the c-discriminant and
(3x-a)®= 0 of the p-discriminant do not satisfy the differentil
equation and are thus not the solutions. Hence we can say that the

c-discriminant and the p-discriminant will contain other loci also, which
are not the solutions.

Note that the straight line x = 0 is touched by the family of curves

represented by the general solution and hence is the envelope of the
family.

It can be easily verified from above that the c-discriminant is the
locus of each point for which ¢(x, y, c)= 0 has equal values Qf ‘
and p-discriminant is the locus of each point for whic
f(x,y,p)=0has equal values of p.

Thus, this example establishes that, while p- and " c-discrimin®' t

relations must both contain the singular solution, which represé e

the envelope, if there be one, they may contain some other loci, Wi 4

: . &
are not the solutions of ‘the differential equation. In the next artic

: . the
‘we shall discuss the nature of such loci, which may occur it h
discriminants.



44. INustrative Examples.

Ex. 1. Examine the eqaationly= 2vx+ p* for Singulay solutioy

2
We have (p+ x)= y+x
or, p= Qy+ X - x.
Put y=ovx®, so that p= x2%+ o= x(V1+ p - 1)
or x@=\11+ v-1- 2v
' dx
dx dv
or, —

x Nito-1-25
Putting ’= 1+ v, we have
dx 2u du _10-4wdu-du

— — —

Y ltu-22" T2 11 4o op
Integrating, we get

= B — 9,2 1'[_%4”___
log x = slog(1+ u 2u)+2 1+ u- 27

- _1 _ N | l1-y
=~ zlog(1+ u- 213 6log1+2u+ a constant.

Hence %14 y4- %)’ 11_: 2uu = a constant

or, x(1- uw'(1+ 2u)’= a constant
or, X(1- up(1+ 2u) = another constant = ¢ (say)

C
or, 1- 32+ 23 =

X
Y Yy 2 c
2
or, .1 3(1+x2J+2[1+ 2] 7

giving finally the general solution as
(20 + 3xy+ cy= 4x"+ yy3,

The c-discriminant is obtained from the condition that the two values of
¢ of the general solution are equal. Thig gives the c-discriminant 35
(+ y)'= 0, in which »*+ Y= 0 occurs thrice. Again, the p-discriminal:ll'z
€ two values of p are equal in the glvf _
ant as x? 4+ Y= 0, which occurs once on'y

$ not satisfy the given equation.

g . lar
. Hence X+ y= 0 is the cusp-locus and the equation has no sing!
solution.

equation. This gives the p-discrimin



find the singular solution of the differentin L ———

2.
; . I equat;
siI\ (x ;{é} COS Y = COs (x g}xi) sin Y+ EI_II_ . on

dx [CH
Lation can be put as vt

e €4
(v )2 gy
Sm(x dx y)— dx
: xp— Y= sin” 'p
ofs y px B Sin— 1p ’
b i in Clairaut’s form and its complete primitive is i
y= cx— sin ‘e
Now, differentiating both sides of (1) partially with respect to p :we (f)
’ e
0= x— \(_l_?, which gives p= -1, g
" ” )
Fliminating P between (1) and (3), we get the p-discriminant relation as
y:ﬂf#1—sin-‘,__\’x’—1. @
X

.discriminant obviously will be the same.
Hence we have the singular solution of he given equation as

y= VZZ— 1 — sin”’ V2 -1.
X

Ex. 3. Solve and examine for singular solution of the equation
xpt— (x— ay=0.
The given equation can be written as

p= + x\ﬁc‘a" x (r" ax 2)

1
o, dy=+ (N\x - ax ?)dx.

Integrating both sides, we get
y=(.':.t( xz’zaxl)
=c 2&(%1"' a)
=c % zr(x_ 3.

The complete primitive is thus
(y- of = gx = 2)



From the given differential equation, we get the P-discriminant relay

x(x_a)1=0. n onag
From the complete primitive, the c-discriminant relation ig Obtafned a (1)
S
x(x-3a)=0.

(2
the

From (1) and (2), it is seen that x is the common factor
discriminants; Hence x = 0 is the singular soluthn. -Furthermo
occurs twice in the p-discriminant; hence this is the tac-
X = 3a= 0 occurs twice in the c-discriminant; hence x - 35 =
locus.

in both
' IOCus_ $
0 gives the Nody)

Ex. 4. Find the singuiar solution of the diﬁ’erentz'ql equation satisfieq by
the family of curves ¢*+ 2cy— X+ 1= 0, where c is a parameter

[C. H 1987)

The equation of the family of curves is
+ 2y- ¥+ 1=0.

M
Differentiating both sides of (1) with respect to x, we get

v _ ., _ 5 e _ X,
an'x 2x=0, giving ¢ .

Putting for c in (1),

X o.x . ;
=+2=y- 24+ 1=0
Fp?

we get the corresponding differential equation

or, 2+ Zxyp+ (1- ) p*= 0.

From (1), the c-discriminant relation is

@)

4 - 4(1- ¥)= 0, that is, ¥+ 1 - 1=0.
From (2), the p-discriminant relation is
409 - 42 (1 - )= g
or, XX+ - 1)=0.
Hence the singular solution is

X+ ¥~ 1=0, that is, 523 y¥=1.

x = 0 occurs twice in the p-discriminant. Hence x = 0 gives the tac-locus

Ex. 5. Solve and test for singular solution of the equation
PP- dxyp+ 8y?= .

Substituting y= v*, we have p= é!/= 2v 51_1_1_
| dx dx



e given equation becomes

th
Ther
dv |3 2 dv
W= | —-4x.v°. 2v— ‘_
80 (dx) YO gyt 80720
'42 3"‘* xg‘?‘-‘l- v=0
of) ¥ d
N
of; v= dx dx :
hich is in Clairaut’s form and its complete primitive is
v=CX— C1
o, '\[!7= X — C1
o y=c(x— ), putting ¢;*= c. 1)

Now, differentiating both sides of the given equation partially with respect
to p, we get
3p* — 4xy = 0.

Ehmmatmg p between this and the glven equation, we get

Y(27y - 4x°) = , .. )
which is thus the p-discriminant relation.

Now, differentiating both sides of the complete primitive (1) with reépect
to ¢, the parameter, we get ‘

—2(x-¢c)+ (x-c)=0
or, | (x-=c)(x-3c)=0. (3)
Eliminating ¢ between (1) and (3), we get _
y=0(whenc=x)and27y—4x3=0 (‘whenc=%x).
Therefore the c-discriminant relation is Lo
y(27y— 4x’)= 0 4)

From (2) and (4), we can say that y= 0 and 27y 4P=0 are the singular
S0 UhOns :

) Note. Notxce that y 0 is a particular solutlon of the equatlon



IFFERENTIAL E
NEAR D QUATIONS

% tH CONSTANT COEFFICIENTS

— IR

" complementary function and particular integral
An ordinary linear differential e .

. quation of n-th order has the form
Ay, p &Y. ... d |
dx"JrPl dxn +P-"‘IE%+ Pay= X, M

where X (called the input function) and the -coefficients
p, Pryecen- y P are constants or functions of x only. The dependent
variable and its derivatives appear only in the first degree and are
not multiplied together. If the coefficient of the derivative of the highest
d" -
order Ex—% be not unity, then all the terms of the equation can be

divided by that coefficient, so that () is the most general form of such
equations.

In this chapter, we shall consider only the ordinary linear
differential equations, in which P, P,,...... , P, are constants and

X is a function of x only or a constant. We shall consider two forms
of the equation (I). First we consider the form, in which the right hand
member, that is, X is zero and then we consider the form, in which

X is a function of x only or a constant. Equations of the first form
(that is, when X = 0) are said to be homogeneous.

Theorem 1. If y= f(x) be the general solution of the equation

d"y - d""! dy —
d—x%+ PIExT‘Hl+ ...... + Py_q gp* Pay=0 .o (1)
and y= ¢ (x ) be a solution of the equation
dy o, A"y +Pp _ Wipy=x, ... @
dx ™ 1 gy ™1 i dx
then y=f(x)+ ¢(x) P &)

is the general solution of the equation (2).

_ Substituting the value of y from (3) in (2), we get the left hand
Side of (2) equal to |

d” n-1 n dn—l - ‘
&d\x{'i' Pl%—nT[l-{- ...... +P"f]+ (_‘:i—Q_*. P, 1.}- - 41T +P"¢}
X




a solution of (1), the expression within the

Now, y= f(x) being y = ¢ (x) being a solution

former bracket reduces to zero. .Similar;yt, 2
(2), the second group of terms 1s equat N (2')
Hence (3) is a solution of the equation (2).

Theorem 2. If y= Yy Y= Y27 ,y =Yy, be integrals of y,

cquation p
n- . 1 -
"y, p M, e P A Pay= 0
dx." dx "™
= B C R + Cnyn s . .
:(]:I(;Zre Cy C2CI s 2y(2? are arbitrary constants, 1s also an integral of the
1’ FECECEE B 7 n

equation (1). _
Substituting y= Ciy1 + Cay2 +
of the equation (1), we get

...... + Cnyn In the left hand side

n n-1
C[fid—%+ Plfl—n—_iﬁ ------ + Pnle
x X
n n-1
+C[i—% Plfj—x;%-{- ...... + Pnsz
x
+ --------------------------------
dnn P dn—l . : P
+ Cp —den+ I—den—l + e + Pn yn
Now, sincey= vy, y=13, ...... , Y = Yn are solutions of the given

equation, each group of terms within the brackets is zero. This shows
that

y= Cly1+ Cz-yz'*' ...... + Cn}/n
is a solution of the equation (1). :

‘Since this solution contains n arbitrary constants, it is the general
solution of the equation (1).

From the above two theorems, we see that the general or complete
solution of the equation '

dx " ldx“‘1+ """ + Prry“x
consists of t ;
cariation WO parts. The first part is the general solution of the
”ll d n-1
o ]
dx"+ P, dx”"l+ ...... P Pny-O
bayl y:fl(cl’CZ’ .....



p aint
y=f2(x)
5 : . :
?),5 ution of the equation under consideration and does not contain
lsaarbitrar)’ constant.
. first part, that is, the expression f, (C,,C,, ...... , C,,x)1is

4 the complementary function ( C. F. ) and the second part, that is,

alle d the particular integral ( P. I).

£) i calle

1
The complete OT general solution of the equation is thus

y=f1(C1IC2r ------ ICnI x)'*‘fi(x):C.F.'i-P.I.

In continuation of above theorems, we state below a few key facts
sbout linear differential equations of second order. These can easily
be verified as before.

(4) If a function ¥, (x) be a solution of a linear differential eqation,
then the function Cy, (x), where C is an arbitrary constant, is also'a
solution of that equation.

(B)If the functions ¥, (x) and y, (x) be solutions of a linear differential
equation, then the sum function {C, y; (x) + C,y, (x)}is also a solution
of that equation, where C, and C, are arbitrary constants.

If neither . nor y, be a constant multiple of the other, then

LA Y, P
% and y, form a fundamental set of solutions of the equation and
(Cy,+ Cy,) is called a linear combination of y, and ¥,.

(C) If a linear differentiai equation with real coefficients has a com-
Plex solution y (x) = u (x) + i (x),, then each of the real part u (x) of
zhls solution and the imaginary part ¥ (x) is also a solutior. of that
qQuation. : |

(D) Superposition Principle : 1f y, be a particular solution of

Py, d Py dy
w2t Pd—z+ gy= f, and y, be that of:{l%+ pzz+ qy= fos

th — .. d d
en(yp+ Y,) is a particular solution Qf%}%"’ PE’%’*‘ qy=f1+f2'

)

and'yp to denote the

No ' '
te 1. Some authors use the symbols ¥e
of the equation, so that

Omplens
e geimentary solution and the particular solution
eral solution is written as ¥ = Ye+ Yp-



n n-1
the Cquation ”_'}ll + Pl i——"‘_“? 4 et + Pn y = OI
dx dx : .
provided y1, Y2, -+« -~ , Yn are linearly independent*, that is, there does ngy
‘ , an, at Jeast one of which is non-zerq

exist a set of constants 41, f2s ----"°
such that
a1y1+ a2y2+ ------ + aﬂyﬂEO'
If these functions be linearly dependent (say
in terms of the others as

# 0), then y; can be written

(@Yt @Yt + anyn).
h= 0
Hence it is clear that this solution can be put as
( a, C1 ) An C]
-1 C,- oot + | Cyu— ,
y LLZ a )yz n a Yn

and hence is not the general solution.
¢ functions means that one of the functions
Itiplying with a constant.

which contains (n— 1) constants
A iinear dependence of a pair €
can be obiained from the other by mu

5.2. Differential operator D.
We use the symbol D for the differential operator %, so that

F

. d ;
for —,{i, we write Dy -

ax

If m be a constant, then (D-m ) y = i;.’i -my.
x

The not_ation .(D— my) (D~ m;)y is defined to mean that y 15
?%eratne;:d) first with (D - m,) and then the result is operated with
- m).

Thus, if m,, ni, be constarts, then

(D-m) (D-m,)y= (D~ m,) (ii}/_ may)
de 2
:_-d_zi_ dy d
dxz g dx— m, {—i.xi.*- m, mzy
. dy
Cde (m,+ m,) %*‘ m, myY

For details, see a later Chapter



g can pe easily verified that
(D- my) (D= m)y=(D?- (my+ m,
d 2
Codx? (1 + my) g‘%““ mimy.
Thus We see that if m, and m, be constants,.then
(D-m) (D-m)y= (D~ m) (D- m)y
thatdis' operation is independent of the order in which t'he- factors are
ysed.

)D+ '"Imzly

53. Solution of linear equations.with constant coefficients.

Using the symbol D (E —d—),the equation

dx
n n-

%J—C%.{- P, %%4_ ...... + Ppy= 0,
where P1, P2, - - --- , P, are constants, can be written as

(D"+ Py D"7l4 e + Py)y=0,
that is, f(D)Yy=0, .. (1)
where f(D)=D"+ PID""1+ ------ + P,.

Let P, ,Py, ------ , P, be real, so that the roots of the equation

f(m)= 0 are either real or conjugate complex.

Here the degree of the equation f(m)=0isn. Let us assume that
the polynomial equation f(m)=0 hasn real and distinct roots

m,my, ...... , m, , so that (1) may be written as
(D— Tn])(D*‘ Mp) “-°"°" (D-"' mn)}/:o.' .. @
The solution of any one of the equations |
(D= m)y=0, (D-m)y=0, """ (D-ma)y=0..- &

if p2(x) bea solution of

is also a solution of the equation (2). For, .
the left hand expression

(D-m;)y= 0, then putting ¢ (x) foryon
of 2), we get

f(D) ¢= (D-m) (D~ ms) st
- (D"" ml) (D__, ma) ......

th = 0, since the operational factors
€ order in which they are used.

(D—' Mn) (D" mz ) 0z

(D- m,)(0)
are independent of



.

"_l"hu's d,(x) is a solution of the equation (1) and sipy
consideration can be made for the other equations in (3).
Now, if we integrate (D— m)y= 0,
that is, %.—— my=20,
we get y= Ce™, where C is an arbitrary constant:
Hence the solutions of equations (3) are
y= Clemlx’ y= Czesz’ ...... ’y= C,,em"'r, (4)

where C;, C,, ...... , Cn are arbitrary constants.

_Each of these solutions being a solution of the equation (1), the
general solution of the equation (1) is
y=Cie™M*+ Coe™ 4+ «oon. + Cpe™*, cev . (5)
Since the constants m, , m,, ...... , m, are distinct, the solutions (4)
are linearly independent and hence (5) is the general solution of (1).
It should be noted that the n distinct numbers
m,m, ...... , My can be found by solving, for m , the equation

ar

m"+ Pym" 4 e + Ph= 0,

which is obtained by substituting e™ for y in (1), since e™ = 0.
This equation is called the auxiliary equation or characteristic equation.
In this case, the roots of the auxiliary equation are real and distinct.

5.4. Case of the auxiliary equation having equal roots.

When two roots of the auxiliary equation are equal, that is,
m,= m,= m(say ), then the solution obtained in the previous article
becomes

—- mx mx
=Ce "+ Ge ™+ ... .. + Cne™", where C;+ C;= C.

This is no longer a general solution, since the number of arbitrary
constants is now (n- 1 ) and not n. '
The corresponding part of the solution is, in fact, the solution of
(D" m)z'y: 0
or, (D-m)u=0,

where u is put for. (D - m)y.



120
golution of this equation is u = C,e"™
putting this value of u, we get

(D- m)y-—u"C2€ , that is, gg—— my = C,e™

ghich 5 2 linear equatlon of first order whose integrating factor is
™ and the solution is

ye "'_[Cz& e "dx=C+ Cx.

Therefore y=(CG+ Cx)e", ‘ |
:n which there are two constants C, and G,.
Thus the general solutlon in this case is
Y= (C1+sz)e + Ge

Cor. If the auxiliary equation has r equal roots m, then the general

solution is
r— 1\ mx ' .
y=(C1+ C2x+""+'Crx )E +Cr+]_em+1x+-...+ Cne

3+ ...... +Cne

mpX

55. Case of the auxiliary equation having c-omplex‘ roots.

If the aux111ary equation has a pair of complex roots, say
m= o+ if, my= o.— i, then the corresponding part of the solution

i C, e(a+rB)x+ C,e (o B
= e (C eiPry Cre 1PY).
- =e*{(C (cosBx+lsme)+C (cosBx—lsme)}
=e {(C1+C2)cos[5x+z(C1 C, ) sin Bx }
= ¢® (A cos Bx+ Bsinpx),

in which A= C,+ C, and B= i (Ci— C2) are arbitrary constants.

If _the above pair of complex roots occurs twice in the auxiliary
®quation, then the corresponding part of the solution is

(G + sz)e(‘“'mx+(C3+ c,x)e'® M
Wthh reduCes to
" e (A + A, x ) cos Bx+ (B, + B,x)sinpx ],

i+ 4,, B,, B, being arbitrary constants:

Note. The methods of solution given above are due to Euler and D’Alembert.



5.6. Illustrative Examples.

: ) d’
Ex. 1. Solve the equation 2 —d;% 7;;3 + 7 —1- 2y= (.

Let y=¢™ bea solution of the above equation.

Then the equation becomes
(2m*-7m*+ 7m— 2)e"”‘ 0.
Since e™# 0, we get
2m®- 7m*+ 7m—- 2= 0
or, - (m-1)(m-2)(2m-1)=0
Therefore m=1, 2, %
Hence the general solution is
L
y= Cie *+ C,e 2r+ Cse Zx’, where C; ’ C; ’ C; are arbltrary constants
Ex. 2. Find the general solution of the equation

d'y_d’y_ od’y _ 18 _ 4,
dx*  dx?® gdxz 11dx 4y=0.

Let y= ¢ ™ be a solution of the above differential equation ;

then we have (m*— m>— 9m?*- 11lm- 4)e™= 0.

Therefore m*— m*- 9m?*- 11lm- 4= 0, since e™# 0
or, (m+1)°(m-4)=0
giving m=-1,-1,-1, 4.
Therefore the general solution is
y=(Ci+ Cix+ Gx)e “+ Ce ¥,
where Cy, C,, C;, C, are arbitrary constants.

4

Ex. 3. Solve the equation L;*x% +a'y=0.

Introducing the differential operator D( A ] the given equation can®®

written as dl
(D*+ g )y 0,
so that the auxiliary equationis m*+ g*= 0
giving m= - St 4 = %7
72“ zvé-andm—- 2:t1 2’



e

ce the general solution is
Hent

a
,'rz-?

a . _a -5 _
ys(cicos-\[-;x+ Czsm—\[;—x)e 2 +(C3cos-\/%—x+ C4sin—f2=x)e ,

C,, Cs, C, are arbitrary constants.

Ci/
where .
x. 4. Solve the equation (D*+ 1)*(D?*+ D+ 1)%y = 0, where
_ 4
b= dx |
Here-theauxi]iaryequationis(m2'+ 1)3(m?*+ m+1)*=0.
ST 1, .33 ,

Thereforem=i1,i‘l,izand m:‘i‘il?B,—%iz—?-

Hence the general solution is

= (Ci+ Cox+ Cix?*)cosx+ (Cyi+ Csx+ Cex?)sinx
y=(

1,
+ {(C7+ CsI)COS%X‘f* (C9+ C;ox)sinizg-—x}eﬁz »
in which C;, C,,......, Cy are arbitrary constants.

Note that the general solution contains ten arbitrary constants, which is
the same as the order of the given equation.

~ Note. The values of the arbitrary constants and hence the particular
solution of the equation can be determined from given conditions.



1
5.7. Symbolic operator .
. perator 7 (p)

We use the expression )T(lf)j X to denote a function of x, which |

does not contain any arbitrary constant and which gives X when
operated with f (D) . Thus, since
(D*- D)(x*-x)=3-2x,
1 ,
D*-D

we have (3- 2x)= x%- x.



e L ——

1
f(D)
the operator f(D). If f(D)= D, then we ’have

f(D) . . _
For our future use, we attempt to find v, which ls'obtamed b
inversely operating on X with the factor (D- a), that is,
1y
U= D _a ’
nd a is a constant. This is, according

g to this definition, is the inverg, af

The operator , accordin

y

in which X is a function of x only a
to the definition, '

(D-a)v=X
d
or, E__xq— av = X,

which is a linear equation of first order in v and whose integrating
factor is ¢ . Therefore its solution is given by

v=Ae™+e” [ Xe ™dx.
Now, as v, by definition, will remain free from any arbitrary
constant, we have

v=—e"[ Xe “dx.

This result will be found useful in the discussion of the general
method of finding the particular integral of an equation.

Note. If, in particular, X= ¢™, then v= xe™.

5.8. General method of finding the particular integral.

Consider the linear equation with constant coefficients

dy o, d"'y
dxn'l‘Pl dx"‘1+ ...... + P"y=X’

whete X is a functi
written as lon of x only. In symbolic notation, this can be

fD)y= X,
where f(D)= D"+ PD" 1,

and the particular integral is thus _1 X
- f(D) "



1
now evaluate Xb |
we can f (D) Yy any one of the fOllOWlIlg methods:

0 et f(D) can be brokep up into linear factors, say, -
f(D):(D— m)Y(D—my)............ (D—’m) |

s being placed in any order.

e faCtOr
Then the particular integral is
1 - | S 1
D__?nl D_ mz -------- D-—m X.

This Fxpression is defined to mean that X is first inversely operated
4pon with (D= M, then .the result is inversely operated upon with
(D= M- ;) and so on until all the factors are similarly utilised.

After the first operation, it becomes

1 1 m_x -
........... e I Xe " dx .

D - m, D - m,
Then operating with the second and remaining factors in succession
we get the particular integral as i

m‘x (mz—ml)x - -m_X
e j e I ......... I X e n (dx) n .
. 1 |
(if) Let (D) can be resolved into partial fractions, say,
1 _ N‘l N2 Nn
f—-——(D) D—ml+D—m2+ ........ + D- m"’
Nyy Nofby barss wope s . N_being constants
Therefore
1 N N N
——X= 1 2 W4 eeeeses "
f(D) D—mIXJr D—mzX+ *D-m,
=N, e™ [ xe ™ dx+ oo +Ne™ ) xe T dx

ular integral is @ laborious

The general method of finding the partic
for some func-

;a;culatiOFL There are short methods, for finding them
ns, which we shall explain now-



(i) Particular integral for X=¢e" , 4 being a constant.

The equation here is  f(D)y=€"
' 1 ax

so that the particular integral is f’-ﬁ‘)’)’ &

‘We have - . .
De®™= ge™, D%™=a’ @ ...,D"le"=a"""e" D™= gn
Therefore '
f(D)e™= (D"+ PyD" ' e t PoiD+ Py)en
= (a"+ Pra" A + Pro1a+ Py)e”™

= f@e".
Operating both sides with f_(_D_) » we get

w5 @)= sy lr@e

Now, since f(D) and 7 (ID) are operators inverse to one another

and f (4) is only an algebraic multiplier it reduces to

-f(a) f(D) ,

whence we have e =——e", provided f(a)# 0.

f (D) - f ( )
If f(D) contains a factor (D — a), then this method fails and we
proceed in the following way :

Since (D - a) is a factor of f(D), let f(D)= (D - a-) ¢ (D).

_1 . 1 1 1 1
Th ax _
enf(D)e -4 ¢(D)e [ - a (P(a)

[cf Note of Art. 5.7 ]

e, provided ¢ (4)# 0

¢(a)
'If (D- )2 be a factor of f(D), let f(D)= (D- a)* y(D)-
ax _ 1 1 ax _ 1 1 o™

R e R e AR
“provided ¥ (4 # 0
_ x2€ ax
, 2y (a)
lowed when (D= g)" is a factof of

- Same procedure will be fo]
f (D), r being a positive integer.




: , —_ o m .
parfffular integral for X=x", m being q positive integey,
. m

der t0 evaluate (D) x 5

In 0
y {f(D) |- ! and arrange the terms in ascendin

ow -
rate on x . The result will be the Partg powers of D

icular integral

] should be noticed that terms of the expansion beyond the m-th

wer of D need not be written, since D"*'x"= g,
po :

(i) particular integral for X = sinax or cosax.

Let us evaluate D) sin ax .

We have D sinax = acosax,
D?sinax= — a’*sinax,
. 3
D?sinax= - a°cos ax,

D*sinax= a*sinax.
o 2. . g
In general, (D?)"sinax= (-a°)"sinax.

Now, if f (D ) contains only even powers of D and' we denote it by
9(D?), then it is obvious that

¢ (D?)sinax= ¢ (- a)sinax.

Operating on both sides with + we get

1
o(D*)

1

ginax= W{M— a?)sinax| .

Since ¢ (- a?) is an algebraic multiplier, we get

L i - —1 _ sinax rovided¢l(—'a2)¢0~
¢(D2)smax_ o= a’) sin ax, p
Simﬂal‘ly, we get
\l~—cosax=_—1—— cos ax, provided'f’("“z-)‘*o'
¢(D2) q)(_ a.z)

DE‘S



More generally, we have
1 ' '._,.__-———1-——-“sin ax+ b)), 0 (- g2
MDz)sm(aer b)—¢(1_-az) (4 ), 9(=a%) %
L by —2—o cos(ax+ b), 0(-a
‘alfd o (D) cos (ax+ b) 0 (- 42.) 2 ) %0
The above results do not holdzin czase ¢ (- a°)= 0. This wil]
happen, if f (D) contains a factor (D" % 4 ) . In such cases, the gener,
method is applied to find the particular integral.
We present a special od here for such cases. '
In such cases, instea Particular integral for
' ticular integral for

meth
d of computing the
ulate the par

sinax or cosax, W€ calc _
. 1ax . ‘
(cosax+ i sinax ), that1s, fore'™ . Thus
1 (cosax+ isinax)= 21 e
D*+ & D+ a
i 1 eiax
(D+ia) (D-1a) -
iax
= : p — 1
i D+ - 1a
fax
e 1
— - —_— 1
2qi D
xemx ¥ 3
= "on  2ai (cos ax + isinax)

_ xsinax X COS ax
2a 2a

- Equating the real and the imaginary parts from both sides, we g€t

X .
cosax = - smax

D*+ & 2a
and S singr= — —
D2+ az za cos ax.

(iv) Particular integral for X=e™ V, V being any function of X

We are to evaluate 1 ax
fioy L)

1 o

Let V; be a function of x defined by V= ——==0 4
1~ f(D+a)



W :
eD(eaxV)=e“x DV'*'aeaxV_";ax ‘ N

e hav® (D

| p*(e” Vl)—aeax(D+“)V+e“"D(D+a)V’
_eax(D+ a) Vi ta) Vi

by successive differentiation, we get

D (eﬂxvl)_eax(D+a) V1

f(D)(e V1)—e“xf(D+ a)V] 2

The ereforé |
putting (1) in (2), we get
1 .
o

Dyle®——=—=V=
ting both s i - : 1
Now opera ing both sides of this quatmn with D) , we get

1 ax 1
- _ o ax
(e V)=¢ f(D a)V

f(D)

(v) Particular integral for X = xV, V being any function of x.
We are to evaluate 77y 7 D) ——(xV).
Let Va be a function of x defined by V1= f (D) (1)
We have D(xV1)-xDV1+ Vi, :

D%(xV1)= xD?*Vi+ oDV,=xD 2y, + (;;DDZ)VI,

D" (xV1)=xD V1+ nD" 'V by Leibnitz’s theorem

d
"JCD"V1 (dD R]Vl
(2)

Hencef(D)(xV)— xf(D
where f* (D) = {f(D)]

Putting (1) in (2) we get g

f(D){x}-(——lﬁ-)'V}iJCV*f' (D)ﬁ’[ﬁ

3 ‘ . tlon Wl ___,L—-' s WE Obtam
Operating all the terms of this equd f( D)
1
/ vV
1y (07D) |




Transposing, we get

1 ’
f(ln)"‘v): ST M

1
[f(D)[2Y

1 d 1
=xf(D)V+'[dD{f(D)HV‘

r integral corresponding to X oy "V, Where 5, .
an be obtained by repeated application of thig e is

The particula
L . ) a
positive integer € hod |

5.10. Illustrative Examples.
d’ d’ dy
Ex. 1. Solve : E;?+ 3#+ 2-&‘;[— x?.

d ]
Introducing the differential operator D ( = I ], the given equation il
written as (D*+ 3D*+ 2D)y=x" '

The auxiliary equation is m >+ 3m*+ 2m= 0
or, m(m+ 1)(m+2)=0.
Therefore m=0,-1, - 2.
Hence the complementary function (y.) is
A+ Be ¥+ Ce™ %,
where A, B, C are arbitrary constants.

The particular integral (y,) is

1 1 3D+ D*Y' _,
133+31)2+213"'55[1+ 2 )x
2
_ 1 3D+ D*° (3D+ D?
E{l' : +( A ¢
=_1_{1_§Q_22+9D2+6D’+D‘_ ...... ¢
2D 2=13 4
1 3D 7
_5(1_-2—4.2[)2_ ......... )xz
_1(1 3 7 1(1 7 }
N —— — -~ 2—.— — ——"‘”‘—‘2"‘
2[ 2"L‘117]"‘2(:3"J i

I



/

Henc 1
y= Yot Y= A+ Be~ +Ce'z’+ﬁ(2x3—9x2+ 21x).

o the compl-.*e solution is

d3
fx. 2 Solve : Ex‘li d—%+ 43‘11 2y=e"+ cosx.

The given equation, in terms of the operator D (E f; )-, is

(Da—' 3D2+ 4D_ 2)y= eI+ cOosXx.
The auxiliary equation is
m - 3m*+4m—-2=0, so that m=1, 1+ i

The complementary function is

ye= Ae”+ (Bcosx+ Csinx)e”,
where A, B, C are arbitrary constants.

The particular integral is
1

= e*+ cosx
= (D3- 3D %+ 4D—2)( )
= 1 e’ + 1 Cos X
(D-1)(D?*- 2D+ 2) (D——l)(D’ D +2)
= L e’ + L CoSs X
(D-1)(1-2+ 2) (D-1)(=1-2D+ 2)
=e” 1 1+ 1 COS X
(D+1-1) - 2D%*+ 3D-1
=e*-x+ 1 CcOS X
-2(-1)+3D-1
-— X 1 X BD—].
=X = e X
e + 3D+ 1cosx xe” + oD 1cos
= xe* 4 2 - —(3D-1)cosx
9(_1)_1cosx xe 10( )

= 1
= xe*
10(35111:u:+ CcosX).

He
fnee the complete solution is
Y=Yt yp

= Ae*+ (Bcosx+ Csinx)e™+ xe + 116(351“1‘*‘ cosXx)-



511. Formation of linear differential equations, whose

solutions are specified.
While solving linear differential equations with constant
coefficients, we observed that if the auxiliary equation f(m=10 had
a100t m= ¢, then the operator f (D) had a factor (D - @) and a term

Such as Ae ™ gccurred in the general'solution ‘of the equation. In the



-

. Vg

bSerVed that Bxe by appzeat('::d B the Sohlti()n}

same way, W€ O factor (D- ), Cx’e only when f(Dy ywh‘fn

D) Contaihed a o AB, G e are independent ot J‘C()T\tained
© - o) ts:)er(:n; as Ae @ sin Bx or Be ™ cog PBx

‘e
’ Which alﬁq
. 1) = 1 B (o T

equa ﬁl‘m

observed. tha

the solution, 24+ p?} in the operator f (D),
D-0o) +

or to factor l(

: ossession, we try to form ho
. se facts in (?Ur P )

Wltgiftf};(;enﬁal equations, whose solutions are Spe
linear

erposition principle. For that, let the g
u . .
:;e;+p8x) with no restrictions on A and B.

e '

mo

Cifieq, ag:“‘-")us |

Umjp, |
ven function bE |

2 know that there will be a root m= l
term Ae , We Of the
I?;?r thz iation and a factor (D — 2? of the Operator f (D) . The to.. |
;uxxﬁxpgear if the auxiliary equation has a doub]e root m=
X ’

0,0 |
and a factor D2 in f(D) . Hence we see that the homogenegys iy |
equation ‘

D*(D-2)y=0
thatis, = (D%~ 2D%)y= 0

(|
has y=Ae™+ Bx+ C as its general solution and hence

y= Ae™ + Bx will be a particular solution of (1), of which A and3 |
are constants.

Again, if the specified function be

Y= 10+ 5xe* + sinx, "

- the |
rm 10 is associated with the root m= 0 of ¥
Auxiliary equation, the

. . e rodl

term 5xe* is associated with ﬂ\e.dO“:;da |
with th the awxiliary equation and the term sin x ;\s a:uxﬂiaﬂ
" the pair of jma inary r = 0+ i. Hence the '
equation js ~aglnary roots m 0+

o mm= 12 m?4 1)=0
- M= 2m 4y 2m’— 2m?+ m=0.
The dlfferential e

is quation correg

o patic®
ponding to this aux1llal')”3.q 0
‘ =2D*%, 2D 3 _ " _ o0, :
the genera| Solution 2D * + D) Y=

of which is

I AR (B + Cx)e* + Esinx+ FcosX-




P
2 propriate choice of the constan®.

ith
W A=10,B=0,C=5,Ex1,7=0

;oM relation (2) becomes a particidar solution of the differential

v
'hi,gion 3

(f agail the specified function be
il x
y = 7xe” cos 3x A 7))

4 if we are to find the homogeneous linear differential equation
| constant coefficients of which this function is a particular
colution, then we observe that the desired equation will have its
quxiliary equation f(m)= 0, whose roots will be m= 1% 3i and
14 3i. Hence the auxiliary equation will be

((m—- 1)+ 9}%=10
mt— am>+ 24m*— 40m+ 100=0.

an

with réd

or,
Thus the desired equation will be
(D'~ 4D3+ 24D " - 40D+ 100)y= 0, i34 i (5)
the general solution of which will be
y=¢e A+ Bx)cos3x+ e (E+ Fx) sin 3x .
With appropriate choice of the constants
A= E= F=0 and B= 7,
lution of the differential

the given relation (4) becomes a particular so
equation (5).

512 Method of undetermined coefficients.

Let us consider the linear differential equation of n-th order

d"y A"y, ... -
dx"+ P, dx""+ +P,,y-X, (1)

W
here P, P,, , P_ are constants and X is a function of x only.

......

In symbolic notation, this can be written as

. fD)y= X,
W
* ((Dy= D"+ PyD" et P

DE.g



emm—— ~r

know that the general solution Difthe €quation (1)?
We Kno

Y by
expfessed as y=y.+t Yp
is the complementary function, that is, the geng,,, Solyy
where Y, . onding homogeneous equation f(D) y = and y b
of the corresp . - solution of the equat P S the
articular integral, that 15, any S ‘Hiation (1) COntaipg,
no arbitrary constants. 8

ined coefficients is one of th
ethod of undetermine - e
forTc‘iljaeteTmining Yp s when X is an exponential, a Polynomig] Iy

. . s d Sine
or cosine, or some combination of such functions only.
’

(i) Particular integral for X= e*, a being a constant.

: — ax |

The equation here is fD)yy=e™. a
Since the derivatives of e™ are constant multiples of ¢* j
reasonable to guess that the particular integral might also be a consty

multiple of e* and we assume that

y,= Ae™ s i)
might be a particular solution of the equation (2).

Here A is a constant (called the undetermined coefficient) to be
determined, such that (3) actually satisfies (2).

Thus we get
Af(@@e =™ giving A =

If f(ar= 0, that is,
f.(m)= 0, then (3) reduc
right hand side of (2) b
satisfy (2), as it stands.

fga_) , provided fa)# 0. -
if a be a root of the auxiiiaf.y equatti&g
es the left hand side of (2) to ZE30. BL;nnot |
eing different from zero, (3) possibly ¢

In this case, we take

. = Axe™
as a trial solutiop, Iv

If g ta

Y,= Ax?:af double root of the auxiliary equation, thenl W:;)Ot o
as a tri . , ! iplé

the auxiliary trial solutjon, In general, if a be a multip take

. , we
Y,= ax’ o eqyatlon of multiplicity r(<n), .then
4 as a trlal Soh.ltion.

ke




-~ . I K
: partiC“’“r integral for X=q x4 a x k-1

\ live integer and a,, a,

)

+ e,
...... + @y are constants,

Here the equation is

fFD)y=agx*+ g, 2" K, @
gince the derivative of a polynomial is also a polynomial, we assume

hat
yp: onk+ Alxk—l-{— DR SR Ak

()

qight be a particular solution of the equation (4), if P, = 0.

Here Ay, Ay,eve--. , A, are constants (undetermined coefficients)
o be determined, such that (5) satisfies (4). Substituting (5) in (4) and
equatir g like powers of x from both sides, we get the values of

: Ay, Ay, .. ... , A

If P,= 0 (that is, if there be no term containing y), then putting (5)
in (4), we see that the highest power of x on the left hand side of (4)
is x*~ ' but that on the right hand side of (4) is x*. So, in this case,
we take ypzx(Aka+ AxF g onnnn. + AY.

IfP,=0 and P,_,= 0, then we take

Y,= x2(Agx + Axt e + A .

In general, if the last r P’s be zero but P,_,# 0, then we take
Y,= xr(onk+ Alxk—l'i- """ + Ap.

(i) Particular integral for X = sinax or cosax.
Let the equation be f(D)y = sinax. e (6)

_Since the derivatives of sin ax are constant multiples of
Snax and cos ax , we take

Y,= Asinax+ B cosax a5 s 7)

™ a trial solution of the equation (6), provided (7) does not satisfy
the hom()geneous equation f(D)y= 0. Here A and B are 'constants
“Ndetermined coefficients) and are obtained by putting (7) in (6) and
*quating the resulting coefficients of sin ax and cos ax from both sides.



-

A
os the equation f(D)y= 0, (that fimi 5 N
ake ) b

= x (A sinax + B cos ax)
)

If (7) satisfl
of yc), then we t

Y

as a trial solution.

Eap

Note. If X be a linear combination of‘e ™, sinbx and %g, 4 k-,
gral is obtained by following the superpositiop, ey then

: inte
parhcular B b o g% (s ke Ciple,
If X be of the form ¢™"sinbx or £ (Zanx ) or (Zay xk~n

or ¢™ (X an x X~ ")sin bx, then yp is modified acccordingly For e Sir
: Xam

if X= ¢ sin bx, where a is not a root of the auxiliary equation ang sin
1

not a part of yc, then we take yp= (A1e”) ( B1 sin by 4

C
that is, yp= e (Asinbx+ Bcosbx). 108 Jy

5.13. Illustrative Examples.

Ex. 1. Obtain linear differential equation with real co

. nstant coeffic;
that is satisfied by the following functions : ficieni

() y= x*— 8sindx; (i1) y= 4e” * cos 3x + 12¢ *sin 3y

» 0, 0. The term sin 4x will be given by a pair

m*(m?+ 16)= 0, that is, m>+ 1l6m3= 0.

Hence the give

n function is a soluti .
: L 0 4
differential equation n of the homogeneous linea

(D°+ 16D} y=0. )
Note. The genera] solution of the equation (1) is

Y= A+ Bx+ Cx24 Esindx + Fcos dx .

of the cOnstants A= B= - 0.C=1 and E= - 8jl15ﬁﬁeS
particular solution of the equation (1).

ts of the auxil; he
xilia S Ei . of t
are (- 1+ 3y 'Y equation corresponding to the terms

tion ig thus (m + 1)2+ 9= 0

, Mm%+ 2m+ 10=0.

g nstal
Neous differential equation with 0
D7+ 2D+ 10)y= 0.
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i
OGENEOUS LINEAR EQuaTio
%’, VARIABLE COEFFiCIENTS O

fomogeneous linear equations, o
6 . .
s linear differential equation of the form
-1
ar n-14d Y
xrlfiﬁ+Plx denm 1T tPhy=X, ...
here Pr/ Py, eevvns , P, are constants and X is either a constant or

function of x only is called a homogeneous linear 4
;‘his is also known as Euler-Cauchy type of equations.

Equations of this type are solved by transforming them to equations

4ith constant coefficients through a change of the independent variable
¢ to z by the relation

ifferential equation.

x=e?, thatis, z= logx.
When this change is effected, we have

é}i_iflﬂ__léﬂ, :
dx dz dx x dz

s o <
-----
-------------------

dx"= xn dzn 2 dzn-l
n-1 1) f _@
...... + (- 1) (n-1): -[l'Z
2o B
We use the symbol D’ for the differential operator .
d
Thus  pro 4 and D"=—d~r" ~ Also D =%y

dz T dz’



- o
Putting this differential operator D” for = e gy
> R
xfé:D'F-
- pr D= 1y,
ar
f{‘"{: D'(D'- )(D’- v,
v_dzy ’ s - F -
" 4z:=D' O -1)D-2...... D'-n+ 1y
Substifuting these relations in (1), we get the transformed equation
as
DD — 1) =oen (D' -n+ 1)

=¥ Pily=2,:d5 g
where Z is a function of Into which X is transformed by the
substitution x= ¢7 .

This is an equation with constant coeffidients and can be easily
solved. If this equation (2) be written in the form

fDYy=Z, cer B
where f(D ) = D(D’"- 1y



"

alternative method to find complementary function

62 |
read Of making any transformation, we : :
nlgiementary function of the equation can find directly the
)
n d g n-1 d e ly
X E;%"‘ P1x dxn_1+ ------ +P”y= X L (1)

[f we put x™ for y, then the left hand side of the equation (1)

{m(m" 1H(m-2) ...... (m-n+1)
+ Pm(@m—1) ------ (M= n+2)+ «on- +Pnlxm
Now, if ‘
f(m) =m (m= Dm-2) «..... (m-n+ 1)
+Ppmm-1) --- (m—-n+ 2)+ -+ 4+ P =0, 2. (2)

then the substitution of x ™ for y makes the left hand side of (1) vanish.
This assures that x ™ is a part of the complementary function of the

solution of (1).

The degree of the equation f (m)= 0 is 7.
m, be the n distinct roots of (2), then
the complementary function is  C;x ™+ G ¥ Mg eeene + C, x™n,
where C,,C,, ...... ,C,_ are arbitrary constants.

It is observed that the function f(m) is the same function of m as

isf(D*) of D’ of the previous article. Therefore corresponding to an

x™ of the C. F. of the solution of the equation (1), there is.an e "'=_‘ of
the C. F. of the solution of the equation (1) of the previous a1 Jcle.
Hence, as has been seen, the C. F. of the solution of the equation (1)
€n be obtained by putting log x for z in the C. F. of the solution of

t . . i
€ equation (2) of the previous article.

r integral.

63, Alternative method to find particula
use 9) for

aIWe use the symbol D’ (some authors

dz* that is, for xd%-c-, that is, for xD .



\")
If f(D") can be expressed as

f(D’)=(D'—a:)(D"‘“1) ...... (D’.‘an)’
1
X becomes
thenf(D,)
1 LI 1
D,_al D’_a-z D’_a ’

in which the operations effected by thg factors will pe taker, -
succession beginning from the extreme right factor. The finy] f:s in
will give the particular integral. ult

It is to be noted that the factors are commutative,

1 _ _
If the operator 7GR can be broken up into partial fractions, then

1l v N, + N, + + N,
—————— es P T F s __"_*
foH”" M| Do, T D'- Do |X-
DNy AN 50008 , N, being constants.

The sum of the results effected by each fraction on X will give
the particular integral.

Thus we see that in both the cases we are to operate X with the
operation of the form

D'- o
1
Let =
€ D'- oY
so that operating both sides with (D’ - a), we get
D'-ayy= X |
d
or, x;{%—ay=x
or, dy

a =
dx ~ R Y= Xx 5,

which is a linear differential equation of the first order.
Integraﬁng, we get

yer @ logr - _[ x4V Xdx

Or’ y:: xu [x-u_‘xdx
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1 ' ‘

‘have > X=. - 0 Lo
fus WE T D- o T T Y [ x=1xas.

e, when f(D)= (D'~ )(D’~ ay)... (D’ 'a-) g 1
n n

Hen¢
ressed in factorial form, then tk : D"
an be exp Y en the particular int .
;iven by J. Integral will be
ap . m-oy-1
’ g I """ .[ x” L X (dx)y".
1 v

If, again, }:(5;5 can be expressed as a sum of partial fractions as

pove, then the particular integral is given by

Nix*™ J. x~ % X dx+ Npx®™ _[ PR ' [
...... + N"xan J. x Op Ide
m b £ : . 1 '
Ifate D - e one of the partial fractions off(D,)X,then |
1 . : : |
the operator 57— is to be applied r times to X. Thus
1 1 a —a—-l ,.
b X X Xdx
(D' - )’ D'- o -[ =
= xa J' x—l I x-’-a—'lx (dx)2
and, in general, ,1 - X = x“_[ x’ljx'l_[ ...... Ix’“'IX(dx)'. |
(D’ - o) ' |

64. A particular case.

m
Let us consider the case when X=%" .

=X mxm'1= mx"

- d
WeknowthatD’xm=xE;xm
_ 1 g2y ™
D’zx'"=xg“(mx'_")=x'm2xm =X -

M .

o *®
.......
e ®

e °* °
lllll
.
s ®

Therefore f(D")x"=f(m)x""



af. o b ‘
Operating both sides with D) » we obtain

m]= _.._1__. If(m)xm]

1 ’
7oy S @I*71= 707
or, x"= f(m) f(llj %" «since f(m) is a constant

1 LR T
Therefore D) X = F(m) X

This method fails, if f(m)=0, that is, if (D'~ m) pe 2 factor |

f(D"). In that case, let o
- f(D)= (D'~ m) F(D").

Then the particular integral is |

1 1 w1 1
D’'-m F(D’) -~ F(m) D'—= m

F(in) SRR %g)g

I (D"~ m)" be a factor of f(D "), r being a positive integer, then |
f(D*)=(D’-m)" G(D"), say. |

Therefore the corresponding particular integral will be given by

1 1 x,,,_x"'(logx)'_
G(m) (D'~ m)r ™ = r1G(m) |

m

6.5. Equations reducible to homogeneous linear form.

The equations of the form

ndn n-1 lf
(a+ bx) Tx%+ P, (a+ bx)n-! i—n:{h

dx |

...... + P él _ X . (1) |

n-1 (a+ bx) dx+ P,y= X, |
Where pl ’ P2 7o e e .., P 5 .t}\er a consta.n |
a function of x + I'n are constants and X is ei el

. us
only, can easily be reduced to the 1‘!"“‘0gel-“1?10con-"'an |




................
"""""""

nnnnn
............
llll
.

gubstituting these in (1), we get the reduced equation as

n-1

n
n L.'Z+ Bl_ L n-1 d wa?- ,n-2 dn—ZE
dZ" b dzn_l b2 dzn-z 4 e

Pﬂ'—l d Pn ]_
Ly o z, ... @

+ —/—7 2 = T
where Z is 2 function of z into which X is transformed by the
z—-da ' '

* gubstitution X = T
This is an equation of homdgeneous form and can be easily solved. .
ify=G(2) be the solution of the equation (2), then
y=G(at bx ) is the solution of the equation (1).

tituted for (a+ bx), the independent ‘variable
¢ from x, we would get a linear equation with

A

If ¢! had been subs

thus being changed to
constant coefficients.

6.6. Illustrative Examples.
In° X dx.2+2x % 2y=x"+ 3x.
z by the substitution

Fx. 1. Solve: X

We first change the independent variable x to
_ 2 ; d _d _p’
x=¢?, that is, z= log X, SO that x -~ = e D’ , say.
The equation is then reduced to
D’(D’-1)(D’- 2)- D’(D’'-1)* 2D’

or, (D:3_ 4Dl2+ 5D’___ Z)yz eBZ+ 3ez
324 3¢”

_oly=e>"+ 3¢’

or, (D"—l)z(D'—Z)ysg |
0 has the roots 1, 1, 2.

Here the auxiliary equation (7~ 17 (m=-2)=
Thus the complementary function is
22_ (C,+ Calog¥) X¥ Cix®. -

(Ci+ CzZ)l’=+ Ce
DE-19



: S
The particular integral is .

1 3z z
- (e’ + 3e
(D'-1)* (D'~ 2) )
1 3z 1
= e y e""+ 3
“(D'-1)*(D’"-2) | (D'--1)2(D'_2_)e=
T4 (D'-1)
1
~ 1,3z z : 1
=3¢ T Do)
1
= 1,32 _ z
—48 e D/"’.l
1 3z Zg_u_l - 2 2
=3¢ - 3¢ > 4x x(logx)

Hence the complete solution is |
y= (C1+ ClegX)x+ C3x2+ %xs-—- éx(logx)z‘

" Ex. 2. Solve : x3‘fi—-‘§+ 2ng-‘é+ 2y = 10[x+ J[CH19911993]

Let us put x= e?, that is, z= log x, so that x—d——-i—D’”

dx  dz =~ 5

- Then the given equation becomes :
{D(D"-1)(D'-2)+ 2D" (D’- 1)+ 2}y= 10(e +e”%)
or, (D'+1)(D’*~2D" +2)y— 10(e*+ e 7).

The roots of the auxiliary equation ( m+1)(m*-2m+ 2) =0
are -1, 1+74.

Thus the complementary function is

Cie "+ (C,cos z+ Cqsmz)e
=Cx ™! |C2cos(logx)+ C3sm(logx)}
The particular mtegral is
1.
(D’+1)(D’2'-2D’+,2) 10(8‘_*_8-2) .

_ 1 g ' N
== ’ ——————— . 4 1 jloe
(I (DT 3y e+ s 1)(D’*= 2D '+ 2)

: 1 '
=5¢ + P 27 = 5(3=+ . B 1

DT+ " DILpE 1P
=56t eT  2n gy y gy

log x .



V

ce the complete solution is

Hen
]C2C05(10gx)+C3Sln(logx)+ 5}+x (CI"’ 2]081)
}*,350105’ . (x *D?— 3xD+ 5)y= x sm(.logx), where D = d%
Let us put X = e’, so that z= logx.
Then the given equation reduces to
’ ’ __ ’ _ 2z . , i=i
ID"(D’~ 1)~ 3D"+ 5|y=e*sinz, where D’ = x5-=—
or, (D'?=4D"+5)y= e %sinz.
The roots of the auxiliary equation m'— 4m+ 5= 0 are- 2+ i .
Thus the complementary function is
eP(Acosz+ Bsmz)=x2{Acos(logx)+ Bsin(logx)},
The particular integral is '
1 22 . . _ 2 1 )
D_4p +5° SMET€ Dy 2)-4a(D'+2)+5
2z 1 sin z

i
~

]

i
o
[ N
H /N
|
(] MI
3
N
N—

Hence the complete solution is
¥=x*{A cos (log x)+ Bsin (logx )~ 1logxcos(logx)|.



C“M,TEB VII
EXAGT DIFFERENTIAL EQUATIONS AND

£) ME SPECIAL FORMS OF EQUATIONS

gxact differential equations and criterion for exactness.

fferential equation of the form

n n-1

qiy,d_Y,...... 4, x,
dx™  dx" dx

X is a constant or a function of x only, is said to be exact, if it

by differentiating directly and without any further

tion of the next lower order of the form

.Adi

wheré :
can be obtained

pfOCCSS an equa
-1
A"y, e
g[dx,,_1 Loy = [ xax+C,
C being a constant. The lower order equation is said to be the first
integral of the higher order equation.
Let us consider the differential equation

v dﬂ dﬂ—l
p, 1+ Plzi—n—_-‘é+ ------- +Py=X, Q)
x .

where Po, P1, -..... , P, and X are constants or functions of x only.

Now we shall find a condition, which the coefficients of the

differential equation must satisfy in order that it is exact. Let the
successive derivatives of P’'s be denoted by dashes, that is, by

P, P", . ... s P
On direct integration, we get
f P,ydx= I P,y dx,

IPn_lg*;idI = Pn-1y— j P'h-1ydx,

Ay, _p ' 4 , 4
IPn— dx—}}n_zaii*-JPn-za‘%dx

d v
= Pn_ zl“ P n-2y+ J' P”n-—? }/dl‘,

dx
dy iy ., d
Ipn-stdez Pn-.'};i}yz"‘Pn—BE:%'*‘ P,’pl—3l/“[1},”n—3ydx



Thus we see that term by term integration of the diff@rehlil
2

R A i S YL A 11

+ (Pn_l_/P'n_z"' P”n—B_ ..-')y”‘ (Pn—Z" P'n—3+ ..")g!
X
iill ....+‘P L—l}i_“‘
+(P,,_3—P'n—4+"")dx2+ den—l_ de+c.
V)

Now, the condition for exactness of the equation (1) wil evident]
be that there will be no term remaining which involves an integral of
y in (2). Thus the required condition is

Pn—' P’n—1+ P”n—>2_ Pmn--.3+ I (— 1)-nP0(n)= 0

‘ 3)
When this condition is satisfied, the first integral of (1) is
Pden“:%+ (P, - P’O)L;:%}Zi+ (P,— P’ + P"O)Z—:;—fg+ .
P = Phlgk ek (S 1y p oDy
= Xax+c. ... @
Note 1.

1. Sometimes an equation, which js not exact, can be made exact
by multiplying the equatio

1 i n by some suitable function of x known as
Tntegratmg factor. If the coefficients be polynomial functions in x, then the
Integrating factor wij]

be of the for " ill be determined from
the condition of exac m x ™ and m will be dete :
| tness. In case t . . . ctions,
then the integy ating fact he coefficients are trigonometric fun

found by trial method, or also will be trigonometric function and will be

3 i d
linear exact equations by a trial mel:;e'
Brouped in such a way that they becs a
Integrals are written directly. We



— .
_ llustrative Examples.

di
Ex. 1. Solve : (1+x) +3x§£+y=0-

e Po=1+xX *, Pr= 3x and P,=1.

Her
Now P2~ P+ P"=1-3+2=0,
Hence the given equation is exact and its first integfal is

dy /
P+ (Py— P)y= C,, C being a constant,

that is, (1+x) cHGr-29y="0C

_ dy, _x __G
or, dx 1+x2 1+x21

which is a linear equation of first order.

The integrating factor is

dx

X :
I 2 2log 1
e 1+ = e2 og ( +x) ,[1'__—+x

Hence the general solution is

yir - |

C, and C; being arbitrary constants.

Ex. 2. Solve : (x°— 4x)—~]i+ (9x* - 12)_}i+ 18x‘—;%+ 6y= 0.

’HereP0=x‘7’- 4x, P,= 9x*- 12, P,=18x, P;=6.
We have P,— P, + P, — Py”= 6- 18+ 18- 6=10.

Hence.the given equation is exact and its first integral is

d2 ’ d ’ ’” _
POE%"‘ (P - Po);l‘g*' (P.— P+ Po)y= G,

: 4 dy _ =
that is, (x3- 4x)_d?y+ Ox - 12— 3x°+ 4) 2t (1‘8x- 18x + 6x) ¥y = L

i 1
or, (x>- 4x)-‘;—5+(6x2— 8)%+ 6xy=.Ci. 1)

Herer again, Poz x3— 4X‘, P1= 6x:.- 8/ P2= 6x’



We have = Py + Py'= 6x= 12x+ 6x= 0.

Hence the equation (1) is exact and its first integra] ig

p,,%+ (P~ Pd)y= Cix+ G,

thatis, (x’'- 4x)g—i+ (6x’- 8~ 3x"+ 4)y= Cx+ G,

or, (x’- 4x)g~;f+ Bx’- 4 y= Cx+ C,.

Here, again, Py = x*-4x, P = 3x2- 4,
We have P,— Py=3x’-4-3x*+4=0.

Hence the equation (2) is also exact and its first integral is

2

Poy"—' C]x?'l' C2x+ C3

2

or, (x*- 4x)y= Cl%—+ Gx+ G, G, G, G being arbitrary constants,

2

Ex. 3. Solve : sin x %}%_ COS X %+ 2ysinx=0. [C. H. 199]

Here Po= sinx, Py= - cosx and P,= 2sinx.
Now P~ P+ Py” = 2sinx- sinx—- sinx= 0.

Hence the equation is exact and its first integral is

d ,
Pod—i’+ (P,- P,’)y= G,

) dy
or, sinx —= - 2y cosx = C,
o d .
e EJ% — 2cotx.y= C cosecx , which is a linear equation of :

first order and whose integrating factor is cosec’x .

Hence its solution is y cosec 2 x = G I cosec*x dx
or 2 Cl .‘1'
s ycosec” x = 5 log tani—- cosec x cotx |+ G

G ., ¥ C .
& Y= smn -\‘logtan—2—~ ?’cosx+ Cysin’x.
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C ]
| NEAR EQUATIONS OF SECOND ORDER_

Complete solution in terms of known integral.

8.1.

P L.
{orem. If an integral, included in the complementary function of a

ar equation of second order be known, then the complete solution can be

liné ' : :
expressed in terms of that known integral. 9--'“'%:
We consider a linear equation of second order in the standard form
A p 3, -
dx2+de+ Qy=X, (1)

where P, Q and X are functions of x. |
If X= 0, then the equation is said to be the reduced equation of (1).

Lety= u, afunctionof x, be a known integral in the complementary
function of (1). We shall now try to determine the complete solution
of (1) in terms of u. For that purpose, let us assume the complete
soluion as y= uv, wherev is also a function of x.

Then we have y,= 4%, v+ Uy, and y,= U, v+ 2u, Uy + UG,
where the suffixes denote the order of differentiation with respect to x.
Substituting these values of ¥, ¥, and y, in (1), we get
uv, + (Qu,+ Pu)v + (u, + Pu,+ Qu)v= X. 2 2)

Now, since y = u is a solution of the equation

the coefficient of v in (2) vanishes and we have

u | X
v, + [24+ P)v1= —
u i
‘which is a linear equation in 1 and hence v; can be determined which
will include one constant.
Then we get ©v= _‘. v, dx + C.
Thus the complete primitive is given by

y=uv=1u j o, dx+ Cu.



8.2. A solution found by inspection.

Since the complete solution of a linear ecjua‘rion of second ordey
can be found, if one integral in its complementary function be known,

we shall try here to determine, by inspection, such an integral of the
equation

2
4y, P%+ Qy=0.

dx ?

(1)

(a) Let y= e™ be a solution of the equation (1).

2
Then we have % = me™ and %—% =m?e™,
5 X

Putting these in ‘thc:equation, we get
m?+ Pm+ Q= 0, since ¢ 0
Hence (i) e will be a solution (m = 1), if 1+ P+ Q=0,

(i) e” * will be a solution (m= — 1),if 1- P+ Q=0,
(z'iz)e""willbeasoluﬁon(m=a), if1+§+ %=O.
a

(b) Let y= x™ be a solution of the equation (1).

‘ 2

Then we have 47— mx™ "' and é—%: m(m- 1)yx" 2,
dx dx

Putting these in the equation, we get
m(m- 1)+ Pmx+ Qx%= 0.
Hence (i) y= x is a solution (m=1),if P+ Qx=0,

() y= x*is a solution (m=12),if 2+ 2Px+ Qx?*= 0.

8.3.  Linear dependence : Wronskijan.

The functions h&), L), ..... . fn (x) are said to be linearly
dependent on an interval T, if there exist constants ¢;, ¢c2,...... , Cn,
not all zero, such that

GHh@®+ o fi()+ .. + ¢, f,(x)=10, N )

forall xe T.



Functions that are not linearly dependent are called linearl
independeﬂf- Thus t'he functions f,, Jap vere o , fn of x are Iinearli
independent on T, if the only constants, that satisfy

¢ fi (x) + )+ e +c,f,(x)=0,
qre the constants ¢ = ¢, = - -.... =¢=0,forallxe T.

The immediate consequence of linear dependence of a given set of
functions f; , fareooon. , [, . 1s that, assuming ¢, # 0 in (1), we have

fr(X)= ﬂlﬂ(X)-l-_ ------ + Br—lf:—l(x)+ Br+1fr+1(x)+'-.
| ot Bufy (),

Ci
Cr

in which Bi= —

This shows that the function f, (x) can be expressed as a linear
combination of the remaining (n - 1) functions of the given set.

The Wronskian of two differentiable functions f, (x) and f, (x) on
an interval T is defined by the determinant

W, fi: x)= A  fi(x)
A @ @

where the dash denotes differentiation with respect to the variable.

The definition can be extended for the case of more than two
functions, in which there will be higher order derivatives of the
functions. A Wronskian with n functions will contain derivatives of
functions of all orders up to (n— 1), each row below the first will
contain elements that are the derivatives of the corresponding elements
in the row above them. ‘

It can be easily verified that if W be the Wronskian of the functions
1, X, X%, cuunns , x""for n> 1y
then W= 01 1!2!...... n—1)!.

We shall now obtain a sufficient condition that n functions will be
linearly independent over an interval T.

Let us assume that each of the functions f, f,, ------ s [niS
differentiable at least (n — 1) times in the interval T. Then, from the

. € —
equation ¢, f,+ 6, o+ " +cpfn=0,



™
we get, by successive differentiation,

afi + Cfy e tec =0,
CH R Cfy 4 e +tenf’=0,
I 6" g g

Now, if we consider these n linear

equations as a
equations in €141 Cy

System of

...... s €, and if the determinant of the System

does not vanish, the system will have no solution except the vne wig,
each of the c’s equal to zero. Thus, if the Wronskian
W, f, ... .. s far X)) O,thenthefunctionsfl,fz, ...... . fnare

pendent. Hence the non-vanishing of the Wronskian is a
sufficient condition that the functions are linearly independent.

The non-vanishing of the Wronskian on an interval however, s
not a necessary condition for linear independence.
It can be shown easily that the functions
(@) e*, e¥, e3*. (i) e*, cosx, sinx and (ii7) 1, sin x, cos x
are linearly independent, while the functions

(v) 1, sin®x, cos®x; (v) sin 3x, sin x, sin > x and
(@) x*— x+ 1, x7= 1, 3x2— x— 1 are linearly dependent,
«8.4. Relation between the two integrals.

Let u and v be the two independent inte

grals of the linear equﬁatior:l
Z—:%+P%+ Qu=0, fJ:(\i,z
so that Z:§+P%+Qu=0
and 3727“2'+P%§+ Qu=0.
Eliminating Q from these two equations, we get
(u %—vzjz)i—P(u Z—z— v'%)=0. oo Q)
Now, if we put w= u Z—:— v %lil- (= 0),




Vfﬁ i A b ot

dw _  d% d %y
then dx =~ % 13 T2

d
o that (2) becomes 71%+ Pw=0

= Ide
or, w= Ae

- Thus we see that any two particular integrals u and v of the
equation (1) are connected by the relation
u@—vdu—Ae—IM i
I T » A being a constant.

d
Here w= u 7~ v—d%= Wronskian W (u, v) = Ae‘I“"

8,5. Solution found by operational factors.

If the left hand side of the linear equation of second 6rde |

d? d '
it Pt =X

_be put in the form f (D) y, then it is sometimes convenient to factorise
~ f(D) in the form f; (D) fi (D), such that when f; (D) operates upon y

and then f; (D) operates upon the result of this operation, the same
result is obtained as when f (D) operates upon y. '

This is symbolically expressed as

f(D)y= f2(D) {/i D)y}
= (D) D)y,
in which the operations are made from right to left. As the factors
of f (D) are not commutative since they contain the variables, the factors

must be put in right order.-We shall make the method of procedure
clear with illustrative examples. |

8.6. Illustrative Examples.
2

Ex.1. Solve: x -3;%— 2x- 1) %+ (x— 1)y=0, interms of known

integral, [ C. H. 1994 ]

Dividing both sides of the given equatioﬁ by x, we get the equation in the’
standard form as

dy _1)dy _1 --_-0,
E;%—(z x)dx+(1 x |7



1 :
so that here P= (2_%) Q=1_;.

By inspection, we say that e¢® is a solution of the equation, g
1+ P+ Q= 0 here. ’ e

Now, for-a complete solution, we put y= ve”,

dy _ x dv d_ s dv  xd
so that e e *+e” Ix andd ve*+ 2e PR Ir?
Putting these in the equation, we get
dx?®  dx
d dv
or, Ix [x de 0.
Integrating, we get x %’= Ci, where C is a constant.
This gives % = %

Integrating once again, we get v= C, logx+ C;, C; being a constant.
Hence the complete solution is :
y=ve'=e" (G logx+ C).

Ex. 2. Solve: (1- x° )—£+x%—y=x(1—x2)

_3..
2, in terms of

known integral. [ C. H. 1988]

Writing the equation in the standard form, we get

dy =~ x dy 1 2
+ - - x(1-x?%)?
dx?. 1-x?dx 1_ 4?2 y ( )
so that here Pzﬁ,, Q=—%€7 and P+ Qx=0.

Thus y= x is a part of the complementary function.

Now, for a complete solution, we put

dy_ _d% ,dv,
. xdx2+ de

= Lj}l:' @ ;
y= vx, so that gy = ¥ 7, T v and iz 2

Putting these in the equation, we get

d’v x d 2
dx’+( +T-”T]d: (1-x%%.

®



/ d
D1 4
subsﬁt“ﬁng p for i this becomes

2 - 1
%+(E+ 1_xx2)P= (1-x%)2.

This is @ linear equation of first order in p, whose integrating factor is

, C X
or, __)E:P:“x“l—xz"';—lz“l—x“

Integrating, we get

3
v= - % (1-x?)2= C (sin” 'x+ % Vi- x2)+ G,

Hence the complete integral is

3
y=vx= — —lg—x(l— x2)2— G (xsin"'x+ V1= x2)+ Gy x,
C, and C, being arbitrary constants. ]



/8.7 Réductitm to normal form by removihg the first derivative

We have seen that a linear equation of second order

2 d - ;
%+de+gy=x e (Y

can only be solved when an integral-‘solufion_belonging to the
complementary function is known. But it is not always possible to
find such an integral solution. We give below a method for the solution

of an equation of the form (1) when no such integral solution can be
found. ' 4

For that purpose, we assume y= uv,

where both u and v are functions of x and none of # and v is a part
of the complementary function of (1). '
Now @0 du o d% % dodu  du
Now It o+ U and PR udx2+ z_dx dx'+ vdxz
Putting these in (1), we get - |

d’ . dv du du . dv  du
Yt zjdx dx " Pt P(“Ex*'*- v:i;)-‘- Quo= X

d% > 2duldv (dW _du T
Or,u*c‘i;—z+ u(P+ ;d_x);i§+ E'z-+ Pd—x+ Qu)v= X. (25

To remove the term of the first deriv

ative of v, we choose .u in
such a manner that

2 du
P+ u dx - o o (3)
1 B
or, M= e'i‘h’d}r B 4)




-where I= Q- +P*- > and S= Xe

NowW the equation (2) gives °

dv 1 d*u du

—+ = 53 == X |

dxz u(dx2+de+ Qu)v= ?l-. R (5)
du 1

Also We have, from (3), 2e= —3 Pu

d*u_ 1 pdu dP
dx2—_'2-(P-a+ uE)
-/

e _1 dP| P? udP
2{P( 2Pu)+ udx} 5

putting these in (5), we get the equation reduced to the normal form

as

=+ Iv=S5, (6)
1 dP [ pax
4 2 dx

If the value of I be a constant or a constant dividéd by x?, then

the equation (6) can readily be solved.

8.8. Change of independent variable:

on is transformed to an integrable form by

Sometimes an equati
e by a suitable substitution.

changing the independent variabl

Let the linear equation of second order in its standard form be

dy , p 3 _ 1
dx2+de+Qy X, (1)

where P, Q and X are functions of X.

Let us change the independent variable x to z, so that

dy _dy dz
dx dz dx

2 g diy(dz ), 9y 4z
wa Ly 4[4 8) (% )l Y )

dz dx dx— dz L’




Putting these in the equation (1), we get

Z

-+ = X
iz | dx | Vaz gt P ar v :
dzz+P-dz.
2, 2 dx X
or,d y . dx X dy Q

LA 7L DA AL O AF
dx dx | dx

2
or,d—i+ P %+ Qiy= X,,

L 2
dz - @
d?*z dz
dx2+de _ X ;
where P | = )2 Q.= dz ; and Xl—-—P' N )
dx dx | dx

Py, Q.. X,are functions of x us shown above but can be expressed
as functions of z, if a relation be given between z and x.

Now, if we choose z in such a way that P, vanishes, that is,

d’z pdz_
dx? de +

- -dx
that is, Z=Ie Jr dx ,

2

then (2) changes to Z—Z% + 0, y=X,.
This is solvable, if Q,

divided by z2

If, again, we choose z in such a way that

Q,= %T is a constant, say a2, then
&

dz
Tdx s \Ja

or, az=fV§dx.

comes out to be a constant or a constant



e 3 LU
.

.th this substitution, (2) becomes

d’y d
it Piptay=X

: ation can easily b : |
ThlS equ y be solved, if P, also comes out to be a

Note: Sometimes it is possible to make both the chmces to get the solution

of the given equation.

[llustrative Examples.

8.9. .
4y 2dy 2 |

Ex. 1. Solve : 75— =+ | at+ =2 |¥= 0, by reducing to normai

form. [N.B. H.1999 2004

Comparing this equation with the linear equation of second order

we get

Now, if we take

_%—Ide ——;—I(—z_)dx ' j'-l;dx

u=2=e = @ \

dx? 4 24

d* , 2 1 1 2
or, 4 = _ —_ == lv=0

dx‘+(a T Y xE 2%

d

or, 2 2y 0 AL
(D*+ a*)v= 0, where D T

This gives _ v= C,cosax+ C.sinax..

Hence the complete solution of the given equation is

y" uv= (C,cosax + Czsmax)x
- AN

re



8.10. Method of variation of parameters .

This method, as explained earlier for equations of first order, is
used to find the complete primitive of a linear differential equation,
when its complementary function is known. We shall explain the
method for a linear differential equation of second order, but it can
be extended to linear equations of any order, though in that case it
requires too much labour to solve a number of simultaneous equations.




he complete solution is obtained by varying the parameters of
the complementary function. ‘
1

Cliet us consider the genéral linear equation of second'order

d pdy, o
dx2+P'dx+Qy—X’ N6 )
where P, Q and X are functions of x. |
Let y= Au+ Bv )

pe the complementary function of the equation (1), where A and B
Jre constants and # and v are functions of x and are independent
solutions of the corresponding homogeneous equation. Thus

du du s d’v dv |
?&7+de+Qu“O and?+P‘d—x+Qv=O. (3)
Let us assume that y= ¢éu+ yo .. (4)

is the complete primitive of (1), where we take ¢ and v in place of A
and B and they are no longer constants but functions of x, to be so
chosen that (4) will satisfy (1). |

Differentiating (4) with respect to x, we get

dy_ . du, o do_ v
dx_¢dx+wdx+udx+vdx
Let us choose ¢ and y such that
ao ay _ |
1 dx+vdx_0' N ),
- dy_  du v
Bp- tat dx—¢dx+wdx

~ Differentiating this once again, we have
dy du  d’v_ dodu dy dv
dx? dx2+ v dx2+ dx dx+ dx dx
d%y

Substituting these values of y, % and e in (1), we get

d’u du d% dv
du 4V, p, .
¢(dx2+P .«,1:c+Q”]+ "’(a!x2+ dx ]
do du dy dv _
N dx dx+ dx dx X

or, do du dy dv_ ... (6)
dx dx dx dx

by virtue of (3).

DE.13



d t
Solving for % and —{;‘3 from (5)‘and (6), we ge
X
d vX dy _ _ u
d;t: . do T Jdu v
v dx ~ " EE dx dx

vX dx | Efmi 3 uX dx
¢= C1+J. du dv and Y= CZ J. du dv

au  4av Vv — -y =
v o dx

dx

Substituting these values of ¢ and v in (4), we get the com‘Elete
solution of the equation (1), C, and G, being arbitrary constan)

> d-
Cor. For an equation of third order Z g + P u + Q dy o Ry=S,...(

let' the complementary function be Au + Bv+ Cw, where u, v, w are
linearly independent functions of x and A, B, C are constants.

Let y=up+ v\u+ wy, ...(2)

be the complete primitive of (1), where ¢, v, % are taken in place of

A, B, C and they are no longer constants but functions of x. Then we
have

d v d
;11 ¢; dz:: X, ... (3
: w40, LAy dx
provided that Ut U wa = 0. .. (4
d d 2 d 2 2 : '
Hence d_z l;(p ——z\y+‘z 2%, ...
ided dudy , dvdy |
provided that v dx d Ix dx E% .() ... (6
Then y_du, dv gy
dx dx .39t d 3 v+ d x
d__ do .4__ dy dlwdy (7
d’ dx " dx? dx dx dx ps
By substitution in (1), we havé d "y

_Q_'_dzvd\p dzw_éx=5,,
dx? dx dx? dx = dx? dx (8)




-

do dy o dx ' '
Then :i%’ T and gy 2re found from the three equations (4), (6)

and (8)

g.11. Illustl.:ative Examples.

Ex. 1. Solve, by the method of variation of parameters, the equation
d’y ' '
Ix2+ @y =secax. [ C. H. 1995, 2001 ]

The complementary function of the equation is
A cos ax+ B sin ax,
in which A and B are constants.

Here cosax and sinax are independent solutions of the corresponding
homogeneous equation, since their Wronskian

cosax sinax |
~asinax  acosax |
= acos?ax+ asin?ax

=a# 0.

Now assume ¢ and ¥ to be functions of x in place of A and B, in such a
way that the given equation is satisfied completely by

y= ¢ cos ax+ Y sin ax.

Differentiating with respect to x, we get
Y _ o sin ax 4, i ax OV

= a sin ax + a cos ax+ cos ax — + sIn ax
ek v axt 4

We choose ¢ and y such that

cosax‘—ig+sinax_di=0. ' .. (1)
dx dx
Therefore %: — ¢a sin ax+ Yya cos ax
x
3 . o d dy
and Z—xlz.—__cpazcos ax— ya? sin ax~asmax£+ acos ax

2 . ]
Putting these values of y and ?E% in the given equation, we get

- a sin axgg-r- a cos ax Y _. cec ax. | .. (2
A4 dx - dx



T

Solving (1) and (2), we get

d_q, = (!"V_ - ]
a % = - tan ax and a e
Integrating, we get
1 _ X
q): ;—2‘ l()g cos ax + C| and w— ﬂ+ C!t

where C, and C, are arbitrary constants.
Hence the complete solution of the equation is
y= ¢ cos ax+ Y sin ax

: X .o 1
= Cycosax+ G, sin ax+ ~- Sin ax+ -3 Cos ax log cos ax .

Ex. 2. Solve, by the method of variation of parameters, the equation

2

9%, 4y= 4 tan 2c. (V. H.1991; B. H.1999; N. B. H. 2006

The complementary function of the equation is

A cos2x+ Bsin 2x, A and B being constants.

Here cos2x and sin 2x are independent solutions, since their
Wronskian is not zero.

Assume the complete solution cf the equation to be
| y= ¢ cos2x + v sin 2x , where ¢ and y are functions of x.

Now ﬂ=—2¢sin2.x+ 2y cos 2x + cost@+ siand—‘E'
dx dx . dx
do . dy
Choose ¢ and y such that cos 2x — + sin2x —= 0. s m
, dx dx
d
Therefore H‘f = — 2¢ sin 2x + 2y cos 2x .
d 2
Also z=—4¢C052x—4\usian—25in2x@+ 2c052x‘d1'
dx dx &
Putting these values of y and c_ﬁ—’ in the given equation, we get
. dy : d
cos 2x ';1-;-511\23' —{;3: 2 tan 2x. (2)

(
dx

do _ _ 2sin’2x d
dx~ " cos2x and E%=-28in2x.

Solving (1) and (2) for 4¢ and %—21 , weé get




-

Int egratingr we get

.2
< 2% 1- cos?2x
__ 9 I sin " 2x . j
¢ Ccos 2x dx 2 COSs 2Xx

sin 2x - log ( sec 2x + tan 2x )+ C,

dx

and \u=2j sin 2x dx = C,— cos 2x,
where C; and G, are arbitrary constants.

Hence the complete solution of the equation is

y= ¢ cos2x+ ysin2x

sin 2x — log (sec2x + tan2x )+ C; cos2x

+ (Cy— cos 2x ) sin2x
Cicos 2x + C;sin2x — cos 2x log (sec2x + tan2x).



g IX
5,mULTANEOUS LINEAR EQUATIONS

oduction.
.1. | Intf

{ar we have conside.red only those differential equations which
tain tWO variables, one independent and the other dependent. Now,
cof . chapter, we consider the methods of solutions of differential
ns involving more than two variables. The simplest form of
. uations is that, in which the number of independent variables
s one. The number of equations, which will connect these variables,

al to the number of dependent variables. We shail consider

11 be equ
pere ordinary equations with one independent variable and two.

ndent variables.

9

yatio

depe

9.2. gimultaneous linear equations with constant coefficients.

First Method : _ |
Let x, y be the dependent variables and t be the independent

variable. The equations will involve derivatives of x and y with respect

to t. Let us denote the operator A by the symbol D. Then the

dt
simultaneous linear equations, to be solved, will be of the form
fiDyx+ f,(D)y= T, oo (D
and o, (D)x+ ¢, (D)y= T, IR (2)

where f, (D), f, (D), $: (D), ¢, (D) are all rational functions of D with

constant coefficients and T, , T, are functions of t, the independent

variable. ,
To eliminate y, we operate (1) with ¢, (D) and (2) with f, (D):

Then these equations become
o,(D)f, D) x+ 6, D), (D)Y= 0, (D) T,
and £, (D)o, D) x+ f, D)6, D)y= LD Iz
Now, since f>, (D) and ¢, (D) aré rational functio
Constant coefficients, we have
o, D)V LDy = f, (D) 9, D)y -

3)
)

ns of D with



B N

Hence, subtracting (4) from (3), we get

16, (D), (D)~ £,(D) 6, (D)) x= 6,(D) T, - f, (D) T,
which is of the form F(D)x= T(!). 5

This equation (5), being a linear differential equation, can be s0lyeq
to find x as a function of t. Now the value of y can be obtained as 5
“inction of t by substituting the value of x in either of the two equation,
If, however, y be determined by an independent elimination, ag the
case of x, the values of x and y so obtained will have to be substityteq
in equation (1) or (2) and the arbitrary constants are adjusted, sq that
the equations may be satisfied.

Note that the number of arbitrary constants in the complete solution
of (1) and (2) will be equal to the degree of D in the polynomi
F (D) of (5).

Second method :
The two given equations connect t with the four quantities

xX,y, %r %]ti We differentiate them with respect to ¢ and get four

dy d&x &
equations connecting x, Yy, %r Eltir ﬁ' El?i From these four
2 2
equations, we eliminate three quantities v, th ’ %;121 In this way, an

equation of the second order, in which x is the dependent variable
and t is the independent variable, is obtained. This is solved to get x

as a function of t. Then y is obtained by substituting this value of x
in the equations already obtained.

Note that this method is applied only when the given simultaneous
equations are of oruer one.

9.3. Ilustrative Examples.

dx
Ex. 1. Solve : dx -
X olve dt 7x+y 0’

%“ 2x - 5y= 0. [B. H. 1991; K. H. 2003]

Using the symbol D for %' the given equations can be written as

(D-7)x+ y= o, (1)
~ 2+ (D= 5)y= L. @



Ermiﬂaﬁng y between (1) and (2), we get
l i .
(D-5Y(D=7)+2)x=0

o (D?*- 12D+ 37)x= 0.

The auxiliary equation is m*- 12m+ 37= 0, giving m= 6+ i.

TherefOI'E X=2e (Cl cost+ Cz sint). . (3)
ThenWehaVE f; e® (- Clsmt+ Cycost)

+ 6% (C,cost+ Cysint). (4)

gubstituting for x and i ; in the first of the given equations, we get

y= Cie® cost+ Cre¥sint+ Cie“sint- C,e¥cost

“((Ci- C2)cost+ (Ci+ C)sint]. )]
Hence the complete solution is given by (3) and (5).

Ex. 2. Solve : (4D+ 44)x+ (9D+ 49)y=t¢,

(3D+ 34)x+ (7D+ 38)y=e', where D= %.

Eliminating x between the two given equations, we get
4D + 44) (7D + 38)— (3D + 34) (9D + 49) |y
- = 4D+ 44)e'- 3D+ 34)¢

or, (D*+ 7D+ 6)y= 48¢'— 34t 3.
This is a linear equation of second order.
The auxiliary equation is m*+ 7m+ 6= 0, whence m= -6, — 1.
Therefore the complementary function is

Cie %+ Ge ™ '.
The particular integral is

1

D+ 7D+ 6

p+(zp+%oj{'@u+$

(48e' — 34t - 3)

— 48 ,t_
=1

I

24

=—e—

1
6
24 ¢t 1 _ 7 3
4 e 6(1 D](34t+)
1
7 6

(34t+ 3-2 34)

— get_ .1_7.t+ _5_5..

7 3 9



Hence the general solution for y is

- 6f -t, 24 +_ 17, . .55, _

Therefore %=-—6C18_6f‘c2€ t+27éet_l?7. S Q)

Now, if we multiply the first equation by 3 and subtract the resylt from
the second equation being multiplied by 4, we get

‘;t+4x+5y de'- 3t. 6]
Puiting the values of y and - frorr;‘(l) and (2) in (3), we get
""6C1€._6t—C2€ +%§e-———+5C,e “+ 5Ce!
+ e - By Dy = gel-
or, 4x = Cle‘g'—- 4C,e” '~ 1;(’e'+ 24 %
or, x'=§'C1e“‘"—.C2e ‘-—%e +—t-—-59§ RN (|

(1) and (4) constitute the solution of the given equations.



9.4. Simultaneous equations in a different form.

Let the equations be given in the form
Pidx+ Qivdy+ Rydz= 0,
Py dx + dey-i- R,dz= 0,
where P1,Q1, Ri, P2, Q2, R, are functions of x, y and z .
Then, by cross-multiplication, we get

d?C _ dy _ dz
QiRe— QR RiP,- R,P; P, Q2 — Plel

' whichisoftheforméﬁ: £l-liz @5,
P.,Q R

where P, Q, R are functions of x, Y, z.

(3)




g
. ~ultaneous equations of t
ﬂ‘?ins'ttlr\\e form (3). 1e fortita (1) and (2) can always
pe P
The :
e for™ @)

equating two of the three members of (3), we may be able to
t an equation in onl}f two variables. The solution of this equation
b, Jes us one of the relations of the general solution of (3). This method
hay be repeated to get another relation with the help of two other
embers of (3). These two relations constitute the general solution.
One relation SO obtained may be used to simplify the other differential

equations to put them in the integrable form.

ollowing methods are used for the solution of equations in

second method : |
We may be able to find multipliers I, m, n and L, M, N such that

one of the equations
Mdx _dy _dz _ ldx+ mdy+ ndz _Ldx+ Mdy+ Nadz
P Q R IP+mQ+nR - LP+ MQ+ NR
can easily be integrated. [The multipliers are sO chosen that the
denominators become Zero and the numerators become exact differen-
tials.] Sometimes only one set of multipliers may fulfil the object.

Any combination of the methods given above will afford two
independent relations between the variables which will constitute the
general solution of (3). Each of these relations will contain an arbitrary

constant.

9.5. Geometrical interpretation oflﬂ/-the equations
dx _dy _ 4z,
P Q R

[ . -
We know, from the geometry of three dimensions, that the direction

Cosines of the tangent to a curve are
dx  dy, 4z,
ds ds ds

that is, are in the ratio dx : dy : dz.
ns represent a system of curves

’ HenCe v A

; geometrically these equatio 1 G

;\0.5 Pace, such that the direction cosines of the tangent t0 it at any
int (x, y, z) are proportional to P Q. R.



9.6. Illustrative Examples.

xy y' oayz- 27
Taking the first two members of the set of equations, we have

Ex. 1. Solve :

dx _ dy
Xy y®
oE; & _ 8y,
Xy

Integrating both sides, we get
logx=log (C,vy)

or, x=Cy.
Again, considering the last two memberg, we have
dy _ dz
y’ xyz— 2x°
dy _ dz ,
or, yZ C!yzz_zclzy.z from (l)
dz
dy =
oL, y C] Z=- ZC 1 2
dz
or, Cdy= 27— 2C.
Integrating both sides, we get |
Ciy=log(z- 2C,)+ G,.
Therefore x=log(z=+ ?3-’1 )+ C;, from (1)
or, x=log(yz—- 2x)- logy + C,.

(1) and (2) constitute the solution of the given equations.

-

—

dx _ d dz [K. H. 2005

)

()



. 102 Condition of integrability of Pdx+ Q dy+ Rdz=0.

CHAPTER X |
TOTAL DIFFERENTIAL EQUATIONS

10.1. Introduction.

An equation of the form
Pdx+ Qdy-F Rdz= 0,

in which P, (, R are functions of x, y and zt,is c@ed a'total differenty
equation or single differential equation or Pfaffian differential equation,

If we are given a relation of the form

fx,y,2=C, cee o (1)
where C is an arbitrary constant, then we can write

F e+ L gy 4
™ dx + 3y dy + 3z dz= 0 2
If the guantities % ’ % ’ gg have a common factor, then the

relation (2) can be simplified by cancelling that factor throughout and
(2) takes the form

Pdx+ Qdy+ Rdz= 0, )
in which P, Q, R are functions of x, ¥ and z.

- Thus, if a relation (1) be given, then from it, we can find a relation
of the type (3), which is a total differential equation.

We shall now try the converse, that is, if we are given a relation
like (3), how to get the corresponding relation like (1) from it
Obviously, for arbitrary values of P, Q and R, it is not possible..we
shall try to find the circumstances under which a total differential
equation will lead to an integral of the type (1).

Let us consider the equation

Pdx + Qdy + Rdz= 0, ot 40
in which P, Q, R are functions of X, ¥y and z.




/
i it be integrable, let its integral be f (x, y, ) =a constant whose
otal differential df is equal to |

Pdx+ Qdy+ Rdz

or this expression multiplied by a factor which may be a functlon of
yyand 2.

_of o O
of _ 9 J
Hence we have = uP, 55: nQ, 55— IR,

where the unknown quantity i is same for all and is a functlon of
X, y aIld Z. g

From the last two of these equations, we have

A(F\ Ff_Ff_ o[
oz|\dy | 0zdy odydz dy| oz

or, 5 ()= 3 (uR)

or, u%g Q—IZi a§+ 55
- u[f‘—gﬁj %5 Q§E'

and. u(%;—%i)‘]=Qi—P%-

Multiplying these three equations by P, Q and R respectwely and
adding them, we get

vp(23Q_3RY, o(BR_PY, 2(P_R\ g o
P[ _ay]+Q[ax—az)+R(ay ]_o. )

This is the relation which must hold among P, Q, R in order that
® 8quation (1) possesses an integral of the form
f(x, y, z)= constant.

) th

Thus the condition (2) is necessary.



]

To prove that this condition is also sufficient, we assume that j,
satisfied by the coefficients P, Q, R of the relation

Pdx+ Qdy+ Rdz=10.
Then it can be easily verified that the relation (2) is satisfieq by
the coefficients of the relation ‘
WP dx+ pQ dy+ PR dz=0, R
where | is a function of x, y and z.

CIf (Pdx+ Q dy ) be not an exact differential with rgspect to x ang
y, then an integrating factor | may be found to make it exact, and 0)
can then be taken as the equation to be considered. Hence, withoy
any loss of generality, we can regard (P dx+ Qdy) as an exact dif
ferential so that :

¢_20. - a
dy 0x
Let [ (pax+ Qay)=v,
oV v _
then ‘ax—Panday—Q.

oP_ 'V .90 3V,
9z dzox % 3z " dzoy

Hence

Substituting these values in the relation

90 OdR), ,f0R_oP) (0P 0Q)_
P[az dy PO % PR T [T Y

it comes as

v azv_aR'JraV R_V_ o o
ax azay ay a]/ ox dz ox = Yy g ‘

9V 9 (aV _ v 3 vV
b ox By[az R)+ dy Bx[R__a"Z =0
V. 3 (av_ )
or, ax ax E"Z_—R = (.
v ol ]
oy aykaz-_




y %4 -

This equation shows that there is a relation between V an

aV_ R | independent v .
(/ R },m ependent of xand y. Hence[ % R]canbe expressed

0z
function of V and z alone. Let

as
- R ( / )‘ ’ 'z ¢ ( 4 ) 4 ‘

_ 9V vV
Now Pdx+ Qdy+ Rdz= 5 -dx+ 5, 4+ 5 %" 0(z, V)dz

= dV-o(z, V)dz.
Thus the equation Pdx+ Qdy+ Rdz= 0 becomes.
dv - ¢(z, V)dz=0, Y
which being an equation in fwo variables is integrable and its integral
may be taken in the form & :
F(z, V)=0.

ression (Pdx+ Qdy+ R dz ) be an exact differential, then
— 0 is called "an exact equation. In that case,

C, then obviously

Note. If the exp
the equation P dx + Qdy+ Rdz

if the integral be u (X, ¥ z)=

2u ou _ du.
P= = Q= and R= 3
op_ 30, 9Q_ R 9R_ 9P,
Hence 'é;" ax, oz oy ant 9x . oz

ution of total differential equations.-

tisfied, we can us€ any
d integral of the given

10.3. Methods of sol

of i_ﬂtegrability is sa

When the condition :
thods to get the require

one of the following me
equation. |

Method 1 : Solution by inspection. _ .
It may be sossible in marny cases that’. by -re-magg?agdit}l
the equation becomes exact and the solution 15 found readty:
rded as constant.

) . dy =
If . ation, say Pax+ Q L=
any two terms of the eg ~ken as const ant, so that dz=0

solved, then the third variable z 15
Let the integral of P 4%~ Qdy=0 be LR

u

Method 2 : Omne pariabie €58

= constant = ¢




o 77—_*—\

This constant in the integral is constant only with respect to x and
y and can therefore be assumed to be a function of z. Taking differentiy)
on both sides of (1) and comparing the result with the equation

Pdx+ Qdy+ Rdz= 0,

we shall be able to determine the constant appearing in the
integral (1) as a function of z. If the coefficients of d¢ or dz involve
functions of x and y, then it will be possible to eliminate them with

the help of the integral (1)-

Thus we shall get %g which is independent of x and y and which
on integration will give ¢ .
Then (1) will be the complete solution of the equation.

Method 3 : Homogeneous equations.

In case P, Q, R are homogeneous functions of x, y and z, then one
variable, say z, may be separated from the other two by the sub-
stitutions x=zu and Yy=2zv
o that dx= zdu+ udz and dy=zdv+ vdz.

Putting these in the equation, the equation will be found to be

reduced to the form in which either the coefficient of dz is zero or not
sero. In either case the new equation may easily be integrated.

In some cases an integrating factor will be required to put the
homogeneous equation in easily integrable form.

Let Pdx+ Qdy+ Rdz=10 (1)

be an integrable equation in which P, Q, R are homogeneous functions
of x, y, z of degree n. Let us substitute x= Uz and y= vz so that

dx= udz+ zdu and dy= vdz+ zdv.
Also let P=z"f(u,v), Q= z"¢(u,v)and R= z"y(u, V)
Putting these in (1), we get

z"{f(u, v)(udz+ zdu)+ o(u, v)(vdz+ zdv)
+y(u,v)dzl= 0.



—
Thusz"[z{f(u, v)du+ ¢(u., v)do}+ {uf(u, v)+ vo(u, v)

-+ W(ul 'U)}dz]= 0.

Let us divide this by

zn+1{uf(u U)-I- Uq)(u .
’ , )+
if it be not equal to zero. )+ v (w0l

Thus we get
f(u, v)dut ¢(u, v)de dz
uf(u, v)+ vo(u, v)+ \p(,u,v)+ z=0' .- @)
w, the equation (1) being integrable so will be the equation (2)-

Also, the variables of the first term of (2) are # and © while that
of the second term is z. Thus the variable z is separated from other
two variables of the equation. If we multiply (2) by any factor con-
taining the variables u, v, z, then this separation will be destroyed.
This suggests that (2) must be an exact equation in itself. But
equation (2) was obtained by dividing the equation (1) by the factor

nt 1 yf(u, v)+ oo (u, v)+ Vi v)}
factor-is (Px+ Qy+ Rz).

No

z
besides the change of variables. This

Hence - C;y TRz is an integrating factor
equation (1), except for the case when Px+ Qy+ Rz=0.In such cases
the general method of solution is applied- ‘

Method 4 : Auxiliary equations.
Let thé given equation pdx+ Qdy

Then we have

30 @R R _ 3P\, R 911_@9):0.

P(—a%-—a—y—)+Q(ax 3z dy x|

Comparing these two, W€ get '
dz

dx ____.ili——-—-—::/',
30 oR 9R_2P op _ 9Q
Bz——a—y— ox 0z dy %

of the homogeneous

+ Rdz= 0 be integrable. |

s and can be solved by methods

These are called auxiliary equation

diecmicead oarlier.



Let u= a and v= b be two integrals.

Now we wish to find A and B in such a way that the given equatigp,
can be written as Adu+ Bdv=20.

So we find Adu+ Bdv=0 and compare it wit
Pdx+ Qdy+ Rdz=10. ,

Then using u= a and v= b, we obtain the values of A and B in
terms of u and v. With these values of A and B in Adu+ Bdv=(,
we get the required integral on integration.

Note. This method is inapplicable, if the équation be exact, that is, if

90_3R 9R_2P _ 3P_30
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10.4. Geometrical interpretation of Pdx+ Q dy+ Rdz=0. |

This differential equation shows that two straight lines whose direc-
" tion cosines are proportional to dx, dy, dz and P, Q, R are perpendicular
to each other. Now the direction cosines of the tangent to a curve at
a point ( x, y, z ) are proportional to dx, dy, dz. Hence the above
equation expresses that the tangent to a curve at the point ( x, y, Z )
is perpendicular to a straight line whose direction cosines are
‘proportional to P, Q, R. :

- 10.5. Thg locus of Pdx+ Qdy+ Rdz= 0. |
" We have seen that, for a point moving along a curve subject to the
condition Pdx+ Qdy+ Rdz=0, | s (1)

the direction in which it moves is at right angles to the straight lin€
whose direction cosines are proportional to P, Q, R.

We further know that a straight line whose direction co
proportional to dx, dy, dz is parallel to a straight line whose
cosines are proportional to P, Q, R under the condition

sines ar¢
direction

dx_ dy_ dz, .. @

Thus we see that the curves traced out by points which move sub.je‘t::
to the condition (1) are orthogonal to the curves traced out by poit
which move subject to the condition (2).




-

If (1) be integrable, then a family of surfaces can be found that are

normal to the curves given by (2) at the
cut the surface. points where these curves

If, on the other hand (1) be non- mtegrable then no family of sur-
faces can be found which is orthogonal to all lines that form the locus
of the equations

dx _dy _dz,
P Q R
10.6. Equations having more than three variables.

Let us consider an equation of the form
Pdx+Qdy+Rdz+Sdt=0, : ' ' w0 15 (1)

where P, Q, R, S are functlons of x,y,z and t.
It is integrable when any one of the four variables is made

constant. Taking x to be a constant so thatdx=0, the equation (1)
becomes |
Qdy+Rdz+5dt=0. - P . @)
If the equation (1) be integrable, then the equatlon @ W111 also be B
integrable. The condition of integrability of (2) is g T

(R3S 95 90 ( 0Q aR} B

—_—— — = |+5| = 0.
Q(at' 82)+R(ay at] -\ 0z. .0y et
ccessively one by one as constants, the'

Similarly, taking y, z, t sU
conditions of integrability are

" (oR 95 35_9_11) 5(_@_1_3__.8_5) o,'
P('—fg'z‘)+R(ax ) 2\ ox)

at -
aQ aS) (95__8_11) 5(25_?9_]
(35 o) Lo e
, I
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n can be derived from the

reSpectwely
e four |

It is observed that the fourth conditio
first three. Hence it is 1Ot independent. In fact, any of thes

conditione can be obtained from the remammg three.



Thus, for an equation (1) involving four variables, the conditigy,
of integrability must hold for the coefficients of all the terms taken by
threes.

When the conditions of integrability are satisfied, the integry i
found out as in the case of three variables treating hfare two of
variables as constants. The constant of integration here is taken to be )
function of two variables which were regarded as constants earlie;
Then differential of the integral relation is formed. C.omparing it wih
the given equation, a relation free of two variables and thej
differentials are obtained. Then the solution is obtained as in the

general case.

Note. Proceeding similarly, the conditions of integrability can be derived
for an equation having any finite.number of independent variables.
In case of n independent variables, the number of independent conditions

of integrability is %(n -1 (n-2).
10.7. Non- integrable single differential equation .
Let us consider an equation
Pdx+Qdy+Rdz=0, | o8 {1)
for which the condition of integrability is not satisfied.

Thus there exists no single relation among the variables x, y, z {0
satisfy it.

- Let us assume an integral relation

f(xl y' z)=0! P (2)
which on'differentiation gives
o L O
—dx+ 2 dy+ 2 = '
ox ey Wy 270 TR

: When the form f(x, y, z) is specified, from (2) and (3).we can
eliminate one of the variables and its differential from (1) and ;
becomes of the form M dx+N dy =0, where M and N are functions of
x and y, if z and dz be eliminated. Solving this, we get an equati®"

involving an arbitrary constant. This e _ | ‘
i ' uati th (2), ¥
constitute the solution of (1). quation, together wi .( )

f (ziﬂote. Here every possible solution can pe 6btained from different fors®
of (2). '




108 [llustrative Examples.

Ex. 1. Solve: (y+ z)dx+ dy+ dz= 0.
Here p=y+z,Q=R=1.
9Q dR oR 9P
Therefore P(az ay +Q Pl ) R(
=(y+2)-0+1:(-1)+1-(1)=0
Thus the condition of integrability is satisfied.

o)
oy ox

The given equation can be written as

dx+ ﬂm_)z O.
y+ z

Integrating, we get
x+ log(y+z)=C

This is the complete integral of the given equation.

Ex. 2. Solve: (y'+ yz)dx+ (z 2y zx)dy+ (y'-
Here P=y’+ yz, Q=2 24 zx and R=y "~ xy.

The condition of integrability is satisfied.

Let z be a constant, so that dz=
(y*+ yz)dx+ (z%+ zx)dy=10
y(y+z)dxt z(z+ x_)dy= 0

or,

dx z
or, £ —dy=0
‘ z+x y(y+2z) 4
dx 1 il d =0
or, 2 =
z+ x+(y y+ZJ d
Integrating, we get ,
log(y+ z)= constant

log(z+ x)+ logy —

y(z+ x)_ constant, mdt?Pendent 0

~ or,
y+Z

= ¢, say,
- Where ¢ is a function of z.

DE-15

|

xy)dz="0
[ B. H. 1998]

0. Hence the given equation reduces to

fxand Yy

1)



S = e
Taking differential on both sides, we get
(y+ z)[y(dz+ dx)+ (z+ x)dy |- y(z+ x)(dy+ dz)

(y+2)" =%
2 =
o1, (y°+ yz)dx+ (z +zx)2dy+(y xy)dz=d¢.
(y+2)
Thus d¢ = 0, using the given ¢quation
or, ¢= C, C being a constant
or, y(z+x)_ -~
Y+ z
or, y(z+x)=C(y+2z).

This is the complete solution of the given equation.
Ex. 3. Solve: z’dx+ (z’— 2yz)dy+ (2y°— yz— zx)dz=0
Here the condition of integrability is satisfied.

Let z-be a constant, so that dz= 0, then the given equation reduces to
| zldx+ (z%- 2yz)dy= 0.
Integrating,Awe get
z’x+ z’y~ y’z= constant= ¢ (say),
where ¢ is a function of z.

Taking differential on both sides, we get
zhdx+ (2°- 2yz)dy+ (2zx+ 22y — y?)dz= dp= %dz.
Comparing this with the given equation, we have

2zx + Zzy- yz—'%= Zyz— yz— zx

or, 3(zx+ yz—- y?)dz= d
3
or, *Z-(zzx+ zzy-—yzz)dz=d¢.
3
Hence ‘fd2=d¢
. Or, @___-3_‘15 .
z

Integrating both sides, we get

log ¢ = 3logz + log C
O $=Cz°



—

© Thus Z’x+?’,y-y’z= 6= Cz’
or, zx+ zy- y*= Cz2.

This is'the complete integral of the given equation.

Ex. 4. Solve : (2xz - y2)dx + (2yz - zx)dy— (x’— xy+ y?)dz=0.
Condition of integrability is satisfied ; for, here

P=2xz—yz, Q=2yz- zx and R= - x*+ xy- y°.
Moreover P, (), R are homogeneous functions of x, y, z. '
Put x=uz and y= vz so that dx= udz+ zdu and dy= vdz+ zdv.
Substituting these in the given equation, we get the equation as
(2z%u- z%v)(udz+ zdu)+ (2z*v-z*u)(vdz+ zdv)

- (z*u?*-z2*uv+ z*v?)dz=
or, (2u—- v)(udz+ zdu)+ (2v- u)(vdz+ zdv) _
- (u?-uv+v?)dz=0

or, . z(2u- v)du+ z(20- u)dv+ (u’+ v*- uwv)dz=0

2U— v 20— U dz
dv+ —=10
or, u2+v’—'uvdu+ N A Sy v
or, (2u—v)2du+2(20—.u)dv+_éz_=0_
U+ v — uv Z

Integrating, we get -
log (u’+ v’- uv)+ logz=logC

or, z(ul+v:-uv)=C
2 2 )
0'[', z(_x_f'l'li—};‘é]:C
2?2 z? 2z

or, x2+ yz—,1y= Cz.

This is the required solution.



