T(I)-Mathematics-H-1(Mod.-I)

2021

MATHEMATICS — HONOURS

First Paper

(Module – I)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

[Throughout the paper \mathbb{R} and \mathbb{Z} denote the set of real numbers and set of integers respectively]

Group - A

(Marks : 35)

Answer any seven questions.

- 1. (a) If p and q are relatively primes, then find out gcd of p+q and p-q.
 - (b) Correct or justify the following statement : For any positive integer n, $f(n) = n^2 + n + 13$ is always a prime integer. 3+2
- 2. (a) If $a \equiv b \pmod{m}$, then show that $a^n \equiv b^n \pmod{m}$ for all positive integers *n*. Is the converse true? Justify your answer.
 - (b) Prove or disprove : gcd(0, x) = x where x is a natural number. (2+1)+2
- **3.** (a) Solve the congruence $12x \equiv 9 \pmod{15}$.
 - (b) State Euclid's second theorem.
- 4. (a) Using Chinese Remainder theorem, solve the linear congruence $9x \equiv 21 \pmod{30}$.
 - (b) If p is a prime integer and k is any positive integer, prove that

$$\phi(p^k) = p^k \left(1 - \frac{1}{p}\right),$$

where ϕ denotes the Euler's phi function.

- 5. (a) Prove that for any non-zero complex number z, $\arg z \arg(-z) = \pm \pi$, according as $\arg z > 0$ or < 0, where $\arg z$ is the principal argument of z.
 - (b) Find all complex numbers z such that $exp(z + \overline{z}) = 1$. 3+2

Please Turn Over

3+2

3+2

T(I)-Mathematics-H-1(Mod.-I)

6. (a) If $\cos h^{-1}(x+iy) + \cos h^{-1}(x-iy) = \cos h^{-1}a$, where x, y, a are real numbers and a > 1, prove that the point (x, y) lies on an ellipse.

3+2

5

(2+1)+2

- (b) Find the product of all values of $(-i)^{\overline{4}}$.
- 7. (a) If $a_1, a_2, a_3, \dots, a_n$ are *n* positive numbers and $a_1 + a_2 + a_3 + \dots + a_n = S$, then show that

$$\frac{S}{S-a_1} + \frac{S}{S-a_2} + \frac{S}{S-a_3} + \dots + \frac{S}{S-a_n} \ge \frac{n^2}{n-1}$$

(b) If α is an imaginary root of the equation $x^7 = 1$, then find the value of $(\alpha^6 + 1)(\alpha^5 + 1)(\alpha^4 + 1)(\alpha^2 + 1)(\alpha^2 + 1)(\alpha + 1)$.

8. Using Sturm's functions, show that the roots of $x^4 + 4x^3 - x^2 - 10x + 3 = 0$ are all real and distinct.

- 9. Solve $x^4 + 3x^3 + 5x^2 + 4x + 2 = 0$ by Ferrari's method.
- 10. Calculate Sturm's functions and find the number and nature of real roots of the equation $x^5 5x + 2 = 0$. 3+1+1
- 11. Show that all the imaginary roots of the equation $x^7 = 1$ are special roots. If α is a special root of $x^7 = 1$, form the equation whose roots are $\alpha + \alpha^6$, $\alpha^2 + \alpha^5$ and $\alpha^3 + \alpha^4$. 2+3
- 12. (a) If α , β , γ are the roots of the equation $ax^3 + 3bx^2 + 3cx + d = 0$, find the value of

$$(2\alpha - \beta - \gamma)(2\beta - \gamma - \alpha)(2\gamma - \alpha - \beta).$$

- (b) Find the value of k, for which the equation $x^4 + 4x^3 2x^2 12x + k = 0$ has 4 real and unequal roots. 3+2
- 13. Show that if the roots of the equation $x^4 + x^3 4x^2 3x + 3 = 0$ are increased by 2, the transformed equation is a reciprocal equation. Solve the reciprocal equation and hence obtain the solution of the given equation. 2+3

Group - B

(Marks : 15)

Answer any three questions.

- 14. (a) Prove of disprove : If X, Y and Z are subsets of a set S, then $X \Delta Z = X \Delta Y$ implies Z = Y.
 - (b) Let $A = \{1, 2, 3, 4\}$ and a relation ρ on A is given by $\rho = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 3), (3, 2), (2, 1), (4, 1), (3, 1)\}$. Verify whether the relation is an equivalence relation. 3+2
- 15. (a) If $f: A \to B$ and $g: B \to C$ are two mappings such that $g \circ f: A \to C$ is surjective. Verify whether g is surjective. Is it necessary that f is surjective? Justify your answer.
 - (b) Find two mappings f and g such that $f \circ g \neq g \circ f$.

(T(I)-Mathematics-H-1(Mod.-I)

- 16. (a) Prove that a finite semigroup in which both cancellation laws hold is a group.
 - (b) Does the set $M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{R} \right\}$ form a group with respect to matrix multiplication? Justify your answer. 3+2
- 17. (a) If each element of a group G is its own inverse, then prove that G is abelian. Is the converse true? Justify your answer.

(3)

- (b) Give an example of a group (G, o) in which o(a) · o(b) ≠ o (aob), for some a, b ∈ G; where o(a) means order of the element a in G.
 (2+1)+2
- 18. (a) In a group (G, o), o(a) = 5 and $a \circ b \circ a^{-1} = b^2$. Show that if $b \neq e$ (the identity element of G), then o(b) = 31.
 - (b) If (H, \cdot) is a subgroup of (G, \cdot) , show that $H^{-1} = H$, where $H^{-1} = \{a^{-1} : a \in H\}$. 3+2